Computer Science > Machine Learning
[Submitted on 11 May 2022]
Title:A State-Distribution Matching Approach to Non-Episodic Reinforcement Learning
View PDFAbstract:While reinforcement learning (RL) provides a framework for learning through trial and error, translating RL algorithms into the real world has remained challenging. A major hurdle to real-world application arises from the development of algorithms in an episodic setting where the environment is reset after every trial, in contrast with the continual and non-episodic nature of the real-world encountered by embodied agents such as humans and robots. Prior works have considered an alternating approach where a forward policy learns to solve the task and the backward policy learns to reset the environment, but what initial state distribution should the backward policy reset the agent to? Assuming access to a few demonstrations, we propose a new method, MEDAL, that trains the backward policy to match the state distribution in the provided demonstrations. This keeps the agent close to the task-relevant states, allowing for a mix of easy and difficult starting states for the forward policy. Our experiments show that MEDAL matches or outperforms prior methods on three sparse-reward continuous control tasks from the EARL benchmark, with 40% gains on the hardest task, while making fewer assumptions than prior works.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.