Statistics > Machine Learning
[Submitted on 6 May 2022]
Title:Probabilistic learning constrained by realizations using a weak formulation of Fourier transform of probability measures
View PDFAbstract:This paper deals with the taking into account a given set of realizations as constraints in the Kullback-Leibler minimum principle, which is used as a probabilistic learning algorithm. This permits the effective integration of data into predictive models. We consider the probabilistic learning of a random vector that is made up of either a quantity of interest (unsupervised case) or the couple of the quantity of interest and a control parameter (supervised case). A training set of independent realizations of this random vector is assumed to be given and to be generated with a prior probability measure that is unknown. A target set of realizations of the QoI is available for the two considered cases. The framework is the one of non-Gaussian problems in high dimension. A functional approach is developed on the basis of a weak formulation of the Fourier transform of probability measures (characteristic functions). The construction makes it possible to take into account the target set of realizations of the QoI in the Kullback-Leibler minimum principle. The proposed approach allows for estimating the posterior probability measure of the QoI (unsupervised case) or of the posterior joint probability measure of the QoI with the control parameter (supervised case). The existence and the uniqueness of the posterior probability measure is analyzed for the two cases. The numerical aspects are detailed in order to facilitate the implementation of the proposed method. The presented application in high dimension demonstrates the efficiency and the robustness of the proposed algorithm.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.