Computer Science > Computation and Language
[Submitted on 1 May 2022]
Title:Crude Oil-related Events Extraction and Processing: A Transfer Learning Approach
View PDFAbstract:One of the challenges in event extraction via traditional supervised learning paradigm is the need for a sizeable annotated dataset to achieve satisfactory model performance. It is even more challenging when it comes to event extraction in the finance and economics domain, a domain with considerably fewer resources. This paper presents a complete framework for extracting and processing crude oil-related events found in CrudeOilNews corpus, addressing the issue of annotation scarcity and class imbalance by leveraging on the effectiveness of transfer learning. Apart from event extraction, we place special emphasis on event properties (Polarity, Modality, and Intensity) classification to determine the factual certainty of each event. We build baseline models first by supervised learning and then exploit Transfer Learning methods to boost event extraction model performance despite the limited amount of annotated data and severe class imbalance. This is done via methods within the transfer learning framework such as Domain Adaptive Pre-training, Multi-task Learning and Sequential Transfer Learning. Based on experiment results, we are able to improve all event extraction sub-task models both in F1 and MCC1-score as compared to baseline models trained via the standard supervised learning. Accurate and holistic event extraction from crude oil news is very useful for downstream tasks such as understanding event chains and learning event-event relations, which can be used for other downstream tasks such as commodity price prediction, summarisation, etc. to support a wide range of business decision making.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.