Computer Science > Hardware Architecture
[Submitted on 30 Apr 2022]
Title:Predict; Do not React for Enabling Efficient Fine Grain DVFS in GPUs
View PDFAbstract:With the continuous improvement of on-chip integrated voltage regulators (IVRs) and fast, adaptive frequency control, dynamic voltage-frequency scaling (DVFS) transition times have shrunk from the microsecond to the nanosecond regime, providing additional opportunities to improve energy efficiency. The key to unlocking the continued improvement in voltage-frequency circuit technology is the creation of new, smarter DVFS mechanisms that better adapt to rapid fluctuations in workload demand.
It is particularly important to optimize fine-grain DVFS mechanisms for graphics processing units (GPUs) as the chips become ever more important workhorses in the datacenter. However, massive amount of thread-level parallelism in GPUs makes it uniquely difficult to determine the optimal voltage-frequency state at run-time. Existing solutions-mostly designed for single-threaded CPUs and longer time scales-fail to consider the seemingly chaotic, highly varying nature of GPU workloads at short time scales.
This paper proposes a novel prediction mechanism, PCSTALL, that is tailored for emerging DVFS capabilities in GPUs and achieves near-optimal energy efficiency. Using the insights from our fine-grained workload analysis, we propose a wavefront-level program counter (PC) based DVFS mechanism that improves program behavior prediction accuracy by 32% on average for a wide set of GPU applications at 1 microsecond DVFS time epochs. Compared to the current state-of-art, our PC-based technique achieves 19% average improvement when optimized for Energy-Delay-Squared Product at 50 microsecond time epochs, reaching 32% power efficiencies when operated with 1 microsecond DVFS technologies.
Submission history
From: Srikant Bharadwaj [view email][v1] Sat, 30 Apr 2022 01:06:52 UTC (1,790 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.