Computer Science > Graphics
[Submitted on 29 Apr 2022 (v1), last revised 9 Sep 2022 (this version, v2)]
Title:Perceptual Visibility Model for Temporal Contrast Changes in Periphery
View PDFAbstract:Modeling perception is critical for many applications and developments in computer graphics to optimize and evaluate content generation techniques. Most of the work to date has focused on central (foveal) vision. However, this is insufficient for novel wide-field-of-view display devices, such as virtual and augmented reality headsets. Furthermore, the perceptual models proposed for the fovea do not readily extend to the off-center, peripheral visual field, where human perception is drastically different. In this paper, we focus on modeling the temporal aspect of visual perception in the periphery. We present new psychophysical experiments that measure the sensitivity of human observers to different spatio-temporal stimuli across a wide field of view. We use the collected data to build a perceptual model for the visibility of temporal changes at different eccentricities in complex video content. Finally, we discuss, demonstrate, and evaluate several problems that can be addressed using our technique. First, we show how our model enables injecting new content into the periphery without distracting the viewer, and we discuss the link between the model and human attention. Second, we demonstrate how foveated rendering methods can be evaluated and optimized to limit the visibility of temporal aliasing.
Submission history
From: Cara Tursun [view email][v1] Fri, 29 Apr 2022 23:41:45 UTC (17,098 KB)
[v2] Fri, 9 Sep 2022 14:20:25 UTC (29,933 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.