Computer Science > Computation and Language
[Submitted on 25 Apr 2022 (v1), last revised 3 Nov 2022 (this version, v3)]
Title:Translation between Molecules and Natural Language
View PDFAbstract:We present $\textbf{MolT5}$ $-$ a self-supervised learning framework for pretraining models on a vast amount of unlabeled natural language text and molecule strings. $\textbf{MolT5}$ allows for new, useful, and challenging analogs of traditional vision-language tasks, such as molecule captioning and text-based de novo molecule generation (altogether: translation between molecules and language), which we explore for the first time. Since $\textbf{MolT5}$ pretrains models on single-modal data, it helps overcome the chemistry domain shortcoming of data scarcity. Furthermore, we consider several metrics, including a new cross-modal embedding-based metric, to evaluate the tasks of molecule captioning and text-based molecule generation. Our results show that $\textbf{MolT5}$-based models are able to generate outputs, both molecules and captions, which in many cases are high quality.
Submission history
From: Carl Edwards [view email][v1] Mon, 25 Apr 2022 17:48:09 UTC (1,444 KB)
[v2] Tue, 26 Apr 2022 17:59:09 UTC (1,444 KB)
[v3] Thu, 3 Nov 2022 23:24:33 UTC (2,421 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.