Computer Science > Cryptography and Security
[Submitted on 18 Apr 2022 (v1), last revised 28 Apr 2022 (this version, v2)]
Title:UNBUS: Uncertainty-aware Deep Botnet Detection System in Presence of Perturbed Samples
View PDFAbstract:A rising number of botnet families have been successfully detected using deep learning architectures. While the variety of attacks increases, these architectures should become more robust against attacks. They have been proven to be very sensitive to small but well constructed perturbations in the input. Botnet detection requires extremely low false-positive rates (FPR), which are not commonly attainable in contemporary deep learning. Attackers try to increase the FPRs by making poisoned samples. The majority of recent research has focused on the use of model loss functions to build adversarial examples and robust models. In this paper, two LSTM-based classification algorithms for botnet classification with an accuracy higher than 98% are presented. Then, the adversarial attack is proposed, which reduces the accuracy to about 30%. Then, by examining the methods for computing the uncertainty, the defense method is proposed to increase the accuracy to about 70%. By using the deep ensemble and stochastic weight averaging quantification methods it has been investigated the uncertainty of the accuracy in the proposed methods.
Submission history
From: Rahim Taheri [view email][v1] Mon, 18 Apr 2022 21:49:14 UTC (255 KB)
[v2] Thu, 28 Apr 2022 14:01:16 UTC (256 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.