Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Apr 2022]
Title:Vision System of Curling Robots: Thrower and Skip
View PDFAbstract:We built a vision system of curling robot which can be expected to play with human curling player. Basically, we built two types of vision systems for thrower and skip robots, respectively. First, the thrower robot drives towards a given point of curling sheet to release a stone. Our vision system in the thrower robot initialize 3DoF pose on two dimensional curling sheet and updates the pose to decide for the decision of stone release. Second, the skip robot stands at the opposite side of the thrower robot and monitors the state of the game to make a strategic decision. Our vision system in the skip robot recognize every stones on the curling sheet precisely. Since the viewpoint is quite perspective, many stones are occluded by each others so it is challenging to estimate the accurate position of stone. Thus, we recognize the ellipses of stone handles outline to find the exact midpoint of the stones using perspective Hough transform. Furthermore, we perform tracking of a thrown stone to produce a trajectory for ice condition analysis. Finally, we implemented our vision systems on two mobile robots and successfully perform a single turn and even careful gameplay. Specifically, our vision system includes three cameras with different viewpoint for their respective purposes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.