Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Apr 2022]
Title:Simultaneous Multiple-Prompt Guided Generation Using Differentiable Optimal Transport
View PDFAbstract:Recent advances in deep learning, such as powerful generative models and joint text-image embeddings, have provided the computational creativity community with new tools, opening new perspectives for artistic pursuits. Text-to-image synthesis approaches that operate by generating images from text cues provide a case in point. These images are generated with a latent vector that is progressively refined to agree with text cues. To do so, patches are sampled within the generated image, and compared with the text prompts in the common text-image embedding space; The latent vector is then updated, using gradient descent, to reduce the mean (average) distance between these patches and text cues. While this approach provides artists with ample freedom to customize the overall appearance of images, through their choice in generative models, the reliance on a simple criterion (mean of distances) often causes mode collapse: The entire image is drawn to the average of all text cues, thereby losing their diversity. To address this issue, we propose using matching techniques found in the optimal transport (OT) literature, resulting in images that are able to reflect faithfully a wide diversity of prompts. We provide numerous illustrations showing that OT avoids some of the pitfalls arising from estimating vectors with mean distances, and demonstrate the capacity of our proposed method to perform better in experiments, qualitatively and quantitatively.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.