Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 Apr 2022]
Title:Invariant Descriptors for Intrinsic Reflectance Optimization
View PDFAbstract:Intrinsic image decomposition aims to factorize an image into albedo (reflectance) and shading (illumination) sub-components. Being ill-posed and under-constrained, it is a very challenging computer vision problem. There are infinite pairs of reflectance and shading images that can reconstruct the same input. To address the problem, Intrinsic Images in the Wild provides an optimization framework based on a dense conditional random field (CRF) formulation that considers long-range material relations. We improve upon their model by introducing illumination invariant image descriptors: color ratios. The color ratios and the reflectance intrinsic are both invariant to illumination and thus are highly correlated. Through detailed experiments, we provide ways to inject the color ratios into the dense CRF optimization. Our approach is physics-based, learning-free and leads to more accurate and robust reflectance decompositions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.