Quantitative Biology > Neurons and Cognition
[Submitted on 7 Apr 2022 (v1), last revised 23 May 2022 (this version, v2)]
Title:Predictive coding and stochastic resonance as fundamental principles of auditory perception
View PDFAbstract:How is information processed in the brain during perception? Mechanistic insight is achieved only when experiments are employed to test formal or computational models. In analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying auditory perception. With a special focus on tinnitus -- as the prime example of auditory phantom perception -- we review recent work at the intersection of artificial intelligence, psychology, and neuroscience. In particular, we discuss why everyone with tinnitus suffers from hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that the increase of sensory precision due to Bayesian inference could be caused by intrinsic neural noise and lead to a prediction error in the cerebral cortex. Hence, two fundamental processing principles - being ubiquitous in the brain - provide the most explanatory power for the emergence of tinnitus: predictive coding as a top-down, and stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles play a crucial role in healthy auditory perception.
Submission history
From: Patrick Krauss [view email][v1] Thu, 7 Apr 2022 10:47:58 UTC (415 KB)
[v2] Mon, 23 May 2022 09:14:52 UTC (416 KB)
Current browse context:
q-bio.NC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.