Computer Science > Machine Learning
[Submitted on 1 Apr 2022]
Title:Robust and Efficient Aggregation for Distributed Learning
View PDFAbstract:Distributed learning paradigms, such as federated and decentralized learning, allow for the coordination of models across a collection of agents, and without the need to exchange raw data. Instead, agents compute model updates locally based on their available data, and subsequently share the update model with a parameter server or their peers. This is followed by an aggregation step, which traditionally takes the form of a (weighted) average. Distributed learning schemes based on averaging are known to be susceptible to outliers. A single malicious agent is able to drive an averaging-based distributed learning algorithm to an arbitrarily poor model. This has motivated the development of robust aggregation schemes, which are based on variations of the median and trimmed mean. While such procedures ensure robustness to outliers and malicious behavior, they come at the cost of significantly reduced sample efficiency. This means that current robust aggregation schemes require significantly higher agent participation rates to achieve a given level of performance than their mean-based counterparts in non-contaminated settings. In this work we remedy this drawback by developing statistically efficient and robust aggregation schemes for distributed learning.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.