Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Mar 2022]
Title:Understanding 3D Object Articulation in Internet Videos
View PDFAbstract:We propose to investigate detecting and characterizing the 3D planar articulation of objects from ordinary videos. While seemingly easy for humans, this problem poses many challenges for computers. We propose to approach this problem by combining a top-down detection system that finds planes that can be articulated along with an optimization approach that solves for a 3D plane that can explain a sequence of observed articulations. We show that this system can be trained on a combination of videos and 3D scan datasets. When tested on a dataset of challenging Internet videos and the Charades dataset, our approach obtains strong performance. Project site: this https URL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.