Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 14 Mar 2022]
Title:A novel evolutionary-based neuro-fuzzy task scheduling approach to jointly optimize the main design challenges of heterogeneous MPSoCs
View PDFAbstract:In this paper, an online task scheduling and mapping method based on a fuzzy neural network (FNN) learned by an evolutionary multi-objective algorithm (NSGA-II) to jointly optimize the main design challenges of heterogeneous MPSoCs is proposed. In this approach, first, the FNN parameters are trained using an NSGA-II-based optimization engine by considering the main design challenges of MPSoCs including temperature, power consumption, failure rate, and execution time on a training dataset consisting of different application graphs of various sizes. Next, the trained FNN is employed as an online task scheduler to jointly optimize the main design challenges in heterogeneous MPSoCs. Due to the uncertainty in sensor measurements and the difference between computational models and reality, applying the fuzzy neural network is advantageous in online scheduling procedures. The performance of the method is compared with some previous heuristic, meta-heuristic, and rule-based approaches in several experiments. Based on these experiments our proposed method outperforms the related studies in optimizing all design criteria. Its improvement over related heuristic and meta-heuristic approaches are estimated 10.58% in temperature, 9.22% in power consumption, 39.14% in failure rate, and 12.06% in execution time, averagely. Moreover, considering the interpretable nature of the FNN, the frequently fired extracted fuzzy rules of the proposed approach are demonstrated.
Submission history
From: Armin Salimi-Badr PhD [view email][v1] Mon, 14 Mar 2022 18:50:15 UTC (2,139 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.