Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Mar 2022 (v1), last revised 28 Mar 2022 (this version, v2)]
Title:CroMo: Cross-Modal Learning for Monocular Depth Estimation
View PDFAbstract:Learning-based depth estimation has witnessed recent progress in multiple directions; from self-supervision using monocular video to supervised methods offering highest accuracy. Complementary to supervision, further boosts to performance and robustness are gained by combining information from multiple signals. In this paper we systematically investigate key trade-offs associated with sensor and modality design choices as well as related model training strategies. Our study leads us to a new method, capable of connecting modality-specific advantages from polarisation, Time-of-Flight and structured-light inputs. We propose a novel pipeline capable of estimating depth from monocular polarisation for which we evaluate various training signals. The inversion of differentiable analytic models thereby connects scene geometry with polarisation and ToF signals and enables self-supervised and cross-modal learning. In the absence of existing multimodal datasets, we examine our approach with a custom-made multi-modal camera rig and collect CroMo; the first dataset to consist of synchronized stereo polarisation, indirect ToF and structured-light depth, captured at video rates. Extensive experiments on challenging video scenes confirm both qualitative and quantitative pipeline advantages where we are able to outperform competitive monocular depth estimation method.
Submission history
From: Yannick Verdie [view email][v1] Wed, 23 Mar 2022 15:25:31 UTC (10,145 KB)
[v2] Mon, 28 Mar 2022 22:23:06 UTC (10,895 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.