Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 21 Mar 2022 (v1), last revised 21 Aug 2022 (this version, v3)]
Title:K-space and Image Domain Collaborative Energy based Model for Parallel MRI Reconstruction
View PDFAbstract:Decreasing magnetic resonance (MR) image acquisition times can potentially make MR examinations more accessible. Prior arts including the deep learning models have been devoted to solving the problem of long MRI imaging time. Recently, deep generative models have exhibited great potentials in algorithm robustness and usage flexibility. Nevertheless, none of existing schemes can be learned or employed to the k-space measurement directly. Furthermore, how do the deep generative models work well in hybrid domain is also worth being investigated. In this work, by taking advantage of the deep energy-based models, we propose a k-space and image domain collaborative generative model to comprehensively estimate the MR data from under-sampled measurement. Experimental comparisons with the state-of-the-arts demonstrated that the proposed hybrid method has less error in reconstruction accuracy and is more stable under different acceleration factors
Submission history
From: Qiegen Liu [view email][v1] Mon, 21 Mar 2022 07:38:59 UTC (2,119 KB)
[v2] Mon, 9 May 2022 05:07:55 UTC (2,115 KB)
[v3] Sun, 21 Aug 2022 09:19:29 UTC (2,055 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.