Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Mar 2022 (v1), last revised 14 Oct 2022 (this version, v2)]
Title:Towards Device Efficient Conditional Image Generation
View PDFAbstract:We present a novel algorithm to reduce tensor compute required by a conditional image generation autoencoder without sacrificing quality of photo-realistic image generation. Our method is device agnostic, and can optimize an autoencoder for a given CPU-only, GPU compute device(s) in about normal time it takes to train an autoencoder on a generic workstation. We achieve this via a two-stage novel strategy where, first, we condense the channel weights, such that, as few as possible channels are used. Then, we prune the nearly zeroed out weight activations, and fine-tune the autoencoder. To maintain image quality, fine-tuning is done via student-teacher training, where we reuse the condensed autoencoder as the teacher. We show performance gains for various conditional image generation tasks: segmentation mask to face images, face images to cartoonization, and finally CycleGAN-based model over multiple compute devices. We perform various ablation studies to justify the claims and design choices, and achieve real-time versions of various autoencoders on CPU-only devices while maintaining image quality, thus enabling at-scale deployment of such autoencoders.
Submission history
From: Gaurav Bharaj [view email][v1] Sat, 19 Mar 2022 18:03:08 UTC (2,040 KB)
[v2] Fri, 14 Oct 2022 00:31:14 UTC (2,372 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.