Computer Science > Machine Learning
[Submitted on 16 Mar 2022]
Title:Coach-assisted Multi-Agent Reinforcement Learning Framework for Unexpected Crashed Agents
View PDFAbstract:Multi-agent reinforcement learning is difficult to be applied in practice, which is partially due to the gap between the simulated and real-world scenarios. One reason for the gap is that the simulated systems always assume that the agents can work normally all the time, while in practice, one or more agents may unexpectedly "crash" during the coordination process due to inevitable hardware or software failures. Such crashes will destroy the cooperation among agents, leading to performance degradation. In this work, we present a formal formulation of a cooperative multi-agent reinforcement learning system with unexpected crashes. To enhance the robustness of the system to crashes, we propose a coach-assisted multi-agent reinforcement learning framework, which introduces a virtual coach agent to adjust the crash rate during training. We design three coaching strategies and the re-sampling strategy for our coach agent. To the best of our knowledge, this work is the first to study the unexpected crashes in the multi-agent system. Extensive experiments on grid-world and StarCraft II micromanagement tasks demonstrate the efficacy of adaptive strategy compared with the fixed crash rate strategy and curriculum learning strategy. The ablation study further illustrates the effectiveness of our re-sampling strategy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.