Computer Science > Machine Learning
[Submitted on 15 Mar 2022 (v1), last revised 7 Aug 2024 (this version, v2)]
Title:Non-Linear Reinforcement Learning in Large Action Spaces: Structural Conditions and Sample-efficiency of Posterior Sampling
View PDF HTML (experimental)Abstract:Provably sample-efficient Reinforcement Learning (RL) with rich observations and function approximation has witnessed tremendous recent progress, particularly when the underlying function approximators are linear. In this linear regime, computationally and statistically efficient methods exist where the potentially infinite state and action spaces can be captured through a known feature embedding, with the sample complexity scaling with the (intrinsic) dimension of these features. When the action space is finite, significantly more sophisticated results allow non-linear function approximation under appropriate structural constraints on the underlying RL problem, permitting for instance, the learning of good features instead of assuming access to them. In this work, we present the first result for non-linear function approximation which holds for general action spaces under a linear embeddability condition, which generalizes all linear and finite action settings. We design a novel optimistic posterior sampling strategy, TS^3 for such problems, and show worst case sample complexity guarantees that scale with a rank parameter of the RL problem, the linear embedding dimension introduced in this work and standard measures of the function class complexity.
Submission history
From: Alekh Agarwal [view email][v1] Tue, 15 Mar 2022 20:50:26 UTC (44 KB)
[v2] Wed, 7 Aug 2024 20:39:29 UTC (45 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.