Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 13 Mar 2022 (v1), last revised 15 Mar 2022 (this version, v2)]
Title:Adaptive Gap Entangled Polynomial Coding for Multi-Party Computation at the Edge
View PDFAbstract:Multi-party computation (MPC) is promising for designing privacy-preserving machine learning algorithms at edge networks. An emerging approach is coded-MPC (CMPC), which advocates the use of coded computation to improve the performance of MPC in terms of the required number of workers involved in computations. The current approach for designing CMPC algorithms is to merely combine efficient coded computation constructions with MPC. Instead, we propose a new construction; Adaptive Gap Entangled polynomial (AGE) codes, where the degrees of polynomials used in computations are optimized for MPC. We show that MPC with AGE codes (AGE-CMPC) performs better than existing CMPC algorithms in terms of the required number of workers as well as storage, communication and computation load.
Submission history
From: Elahe Vedadi [view email][v1] Sun, 13 Mar 2022 21:05:39 UTC (1,038 KB)
[v2] Tue, 15 Mar 2022 02:14:44 UTC (1,032 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.