Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 Mar 2022]
Title:Towards Universal Texture Synthesis by Combining Texton Broadcasting with Noise Injection in StyleGAN-2
View PDFAbstract:We present a new approach for universal texture synthesis by incorporating a multi-scale texton broadcasting module in the StyleGAN-2 framework. The texton broadcasting module introduces an inductive bias, enabling generation of broader range of textures, from those with regular structures to completely stochastic ones. To train and evaluate the proposed approach, we construct a comprehensive high-resolution dataset that captures the diversity of natural textures as well as stochastic variations within each perceptually uniform texture. Experimental results demonstrate that the proposed approach yields significantly better quality textures than the state of the art. The ultimate goal of this work is a comprehensive understanding of texture space.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.