Electrical Engineering and Systems Science > Systems and Control
[Submitted on 6 Mar 2022]
Title:Deep Reinforcement Learning based Model-free On-line Dynamic Multi-Microgrid Formation to Enhance Resilience
View PDFAbstract:Multi-microgrid formation (MMGF) is a promising solution to enhance power system resilience. This paper proposes a new deep reinforcement learning (RL) based model-free on-line dynamic multi-MG formation (MMGF) scheme. The dynamic MMGF problem is formulated as a Markov decision process, and a complete deep RL framework is specially designed for the topology-transformable micro-grids. In order to reduce the large action space caused by flexible switch operations, a topology transformation method is proposed and an action-decoupling Q-value is applied. Then, a CNN based multi-buffer double deep Q-network (CM-DDQN) is developed to further improve the learning ability of original DQN method. The proposed deep RL method provides real-time computing to support on-line dynamic MMGF scheme, and the scheme handles a long-term resilience enhancement problem using adaptive on-line MMGF to defend changeable conditions. The effectiveness of the proposed method is validated using a 7-bus system and the IEEE 123-bus system. The results show strong learning ability, timely response for varying system conditions and convincing resilience enhancement.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.