Electrical Engineering and Systems Science > Systems and Control
[Submitted on 1 Mar 2022 (v1), last revised 14 Nov 2022 (this version, v2)]
Title:Safe Control with Minimal Regret
View PDFAbstract:As we move towards safety-critical cyber-physical systems that operate in non-stationary and uncertain environments, it becomes crucial to close the gap between classical optimal control algorithms and adaptive learning-based methods. In this paper, we present an efficient optimization-based approach for computing a finite-horizon robustly safe control policy that minimizes dynamic regret, in the sense of the loss relative to the optimal sequence of control actions selected in hindsight by a clairvoyant controller. By leveraging the system level synthesis framework (SLS), our method extends recent results on regret minimization for the linear quadratic regulator to optimal control subject to hard safety constraints, and allows competing against a safety-aware clairvoyant policy with minor modifications. Numerical experiments confirm superior performance with respect to finite-horizon constrained $\mathcal{H}_2$ and $\mathcal{H}_\infty$ control laws when the disturbance realizations poorly fit classical assumptions.
Submission history
From: Andrea Martin [view email][v1] Tue, 1 Mar 2022 11:13:36 UTC (29 KB)
[v2] Mon, 14 Nov 2022 17:11:38 UTC (31 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.