Computer Science > Sound
[Submitted on 15 Nov 2018 (v1), last revised 15 Feb 2019 (this version, v2)]
Title:Audio-based identification of beehive states
View PDFAbstract:The absence of the queen in a beehive is a very strong indicator of the need for beekeeper intervention. Manually searching for the queen is an arduous recurrent task for beekeepers that disrupts the normal life cycle of the beehive and can be a source of stress for bees. Sound is an indicator for signalling different states of the beehive, including the absence of the queen bee. In this work, we apply machine learning methods to automatically recognise different states in a beehive using audio as input. % The system is built on top of a method for beehive sound recognition in order to detect bee sounds from other external sounds. We investigate both support vector machines and convolutional neural networks for beehive state recognition, using audio data of beehives collected from the NU-Hive project. Results indicate the potential of machine learning methods as well as the challenges of generalizing the system to new hives.
Submission history
From: Inês Nolasco [view email][v1] Thu, 15 Nov 2018 13:13:32 UTC (1,425 KB)
[v2] Fri, 15 Feb 2019 16:07:32 UTC (1,939 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.