Computer Science > Artificial Intelligence
[Submitted on 18 Feb 2018]
Title:Large Neighborhood-Based Metaheuristic and Branch-and-Price for the Pickup and Delivery Problem with Split Loads
View PDFAbstract:We consider the multi-vehicle one-to-one pickup and delivery problem with split loads, a NP-hard problem linked with a variety of applications for bulk product transportation, bike-sharing systems and inventory re-balancing. This problem is notoriously difficult due to the interaction of two challenging vehicle routing attributes, "pickups and deliveries" and "split deliveries". This possibly leads to optimal solutions of a size that grows exponentially with the instance size, containing multiple visits per customer pair, even in the same route. To solve this problem, we propose an iterated local search metaheuristic as well as a branch-and-price algorithm. The core of the metaheuristic consists of a new large neighborhood search, which reduces the problem of finding the best insertion combination of a pickup and delivery pair into a route (with possible splits) to a resource-constrained shortest path and knapsack problem. Similarly, the branch-and-price algorithm uses sophisticated labeling techniques, route relaxations, pre-processing and branching rules for an efficient resolution. Our computational experiments on classical single-vehicle instances demonstrate the excellent performance of the metaheuristic, which produces new best known solutions for 92 out of 93 test instances, and outperforms all previous algorithms. Experimental results on new multi-vehicle instances with distance constraints are also reported. The branch-and-price algorithm produces optimal solutions for instances with up to 20 pickup-and-delivery pairs, and very accurate solutions are found by the metaheuristic.
Submission history
From: Matheus Nohra Haddad [view email][v1] Sun, 18 Feb 2018 02:09:20 UTC (217 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.