Computer Science > Information Theory
[Submitted on 24 Jun 2015]
Title:Energy-Efficient 5G Outdoor-to-Indoor Communication: SUDAS Over Licensed and Unlicensed Spectrum
View PDFAbstract:In this paper, we study the joint resource allocation algorithm design for downlink and uplink multicarrier transmission assisted by a shared user equipment (UE)-side distributed antenna system (SUDAS). The proposed SUDAS simultaneously utilizes licensed frequency bands and unlicensed frequency bands, (e.g. millimeter wave bands), to enable a spatial multiplexing gain for single-antenna UEs to improve energy efficiency and system throughput of $5$-th generation (5G) outdoor-to-indoor communication. The design of the UE selection, the time allocation to uplink and downlink, and the transceiver processing matrix is formulated as a non-convex optimization problem for the maximization of the end-to-end system energy efficiency (bits/Joule). The proposed problem formulation takes into account minimum data rate requirements for delay sensitive UEs and the circuit power consumption of all transceivers. In order to design a tractable resource allocation algorithm, we first show that the optimal transmitter precoding and receiver post-processing matrices jointly diagonalize the end-to-end communication channel for both downlink and uplink communication via SUDAS. Subsequently, the matrix optimization problem is converted to an equivalent scalar optimization problem for multiple parallel channels, which is solved by an asymptotically globally optimal iterative algorithm. Besides, we propose a suboptimal algorithm which finds a locally optimal solution of the non-convex optimization problem. Simulation results illustrate that the proposed resource allocation algorithms for SUDAS achieve a significant performance gain in terms of system energy efficiency and spectral efficiency compared to conventional baseline systems by offering multiple parallel data streams for single-antenna UEs.
Submission history
From: Derrick Wing Kwan Ng [view email][v1] Wed, 24 Jun 2015 13:37:32 UTC (362 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.