Computer Science > Information Theory
[Submitted on 28 Jul 2014 (v1), last revised 27 Apr 2015 (this version, v2)]
Title:Robust analysis $\ell_1$-recovery from Gaussian measurements and total variation minimization
View PDFAbstract:Analysis $\ell_1$-recovery refers to a technique of recovering a signal that is sparse in some transform domain from incomplete corrupted measurements. This includes total variation minimization as an important special case when the transform domain is generated by a difference operator. In the present paper we provide a bound on the number of Gaussian measurements required for successful recovery for total variation and for the case that the analysis operator is a frame. The bounds are particularly suitable when the sparsity of the analysis representation of the signal is not very small.
Submission history
From: Maryia Kabanava [view email][v1] Mon, 28 Jul 2014 13:05:22 UTC (35 KB)
[v2] Mon, 27 Apr 2015 08:07:30 UTC (92 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.