Computer Science > Artificial Intelligence
[Submitted on 20 Oct 2024 (v1), last revised 7 Jan 2025 (this version, v3)]
Title:Hallucination Detox: Sensitivity Dropout (SenD) for Large Language Model Training
View PDF HTML (experimental)Abstract:As large language models (LLMs) are increasingly deployed across various industries, concerns regarding their reliability, particularly due to hallucinations - outputs that are factually inaccurate or irrelevant to user input - have grown. Our research investigates the relationship between the training process and the emergence of hallucinations to address a key gap in existing research that focuses primarily on post hoc detection and mitigation strategies. Using models from the Pythia suite (70M - 12B parameters) and several hallucination detection metrics, we analyze hallucination trends throughout training and explore LLM internal dynamics. We introduce Sensitivity Dropout (SenD), a novel training protocol designed to mitigate hallucinations by reducing variance during training. SenD achieves this by deterministically dropping embedding indices with significant variability, referred to as Sensitive Embedding Indices. In addition, we develop an unsupervised hallucination detection metric, Efficient EigenScore (EES), which approximates the traditional EigenScore at 2x speed. This efficient metric is integrated into our protocol, allowing SenD to be both computationally scalable and effective at reducing hallucinations. Our empirical evaluation demonstrates that our approach improves LLM reliability at test time by up to 40% compared to normal training while also providing an efficient method to improve factual accuracy when adapting LLMs to Wikipedia, Medical, and LegalBench domains.
Submission history
From: Juan Guerra [view email][v1] Sun, 20 Oct 2024 18:18:23 UTC (3,742 KB)
[v2] Sun, 8 Dec 2024 18:42:11 UTC (4,784 KB)
[v3] Tue, 7 Jan 2025 14:56:42 UTC (4,784 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.