Computer Science > Computation and Language
[Submitted on 6 Apr 2024]
Title:Joint Visual and Text Prompting for Improved Object-Centric Perception with Multimodal Large Language Models
View PDF HTML (experimental)Abstract:Multimodal Large Language Models (MLLMs) such as GPT-4V and Gemini Pro face challenges in achieving human-level perception in Visual Question Answering (VQA), particularly in object-oriented perception tasks which demand fine-grained understanding of object identities, locations or attributes, as indicated by empirical findings. This is mainly due to their limited capability to effectively integrate complex visual cues with textual information and potential object hallucinations. In this paper, we present a novel approach, Joint Visual and Text Prompting (VTPrompt), that employs fine-grained visual information to enhance the capability of MLLMs in VQA, especially for object-oriented perception. VTPrompt merges visual and text prompts to extract key concepts from textual questions and employs a detection model to highlight relevant objects as visual prompts in images. The processed images alongside text prompts are subsequently fed into MLLMs to produce more accurate answers. Our experiments with GPT-4V and Gemini Pro, on three benchmarks, i.e., MME , MMB and POPE, demonstrate significant improvements. Particularly, our method led to a score improvement of up to 183.5 for GPT-4V on MME and enhanced MMB performance by 8.17\% for GPT-4V and 15.69\% for Gemini Pro.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.