Computer Science > Robotics
[Submitted on 21 Mar 2024]
Title:Evidential Semantic Mapping in Off-road Environments with Uncertainty-aware Bayesian Kernel Inference
View PDF HTML (experimental)Abstract:Robotic mapping with Bayesian Kernel Inference (BKI) has shown promise in creating semantic maps by effectively leveraging local spatial information. However, existing semantic mapping methods face challenges in constructing reliable maps in unstructured outdoor scenarios due to unreliable semantic predictions. To address this issue, we propose an evidential semantic mapping, which can enhance reliability in perceptually challenging off-road environments. We integrate Evidential Deep Learning into the semantic segmentation network to obtain the uncertainty estimate of semantic prediction. Subsequently, this semantic uncertainty is incorporated into an uncertainty-aware BKI, tailored to prioritize more confident semantic predictions when accumulating semantic information. By adaptively handling semantic uncertainties, the proposed framework constructs robust representations of the surroundings even in previously unseen environments. Comprehensive experiments across various off-road datasets demonstrate that our framework enhances accuracy and robustness, consistently outperforming existing methods in scenes with high perceptual uncertainties.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.