Computer Science > Computation and Language
[Submitted on 6 Mar 2024]
Title:Can Large Language Models do Analytical Reasoning?
View PDF HTML (experimental)Abstract:This paper explores the cutting-edge Large Language Model with analytical reasoning on sports. Our analytical reasoning embodies the tasks of letting large language models count how many points each team scores in a quarter in the NBA and NFL games. Our major discoveries are in two folds. Firstly, we find among all the models we employed, GPT-4 stands out in effectiveness, followed by Claude-2.1, with GPT-3.5, Gemini-Pro, and Llama-2-70b lagging behind. Specifically, we compare three different prompting techniques and a divide-and-conquer approach, we find that the latter was the most effective. Our divide-and-conquer approach breaks down play-by-play data into smaller, more manageable segments, solves each piece individually, and then aggregates them together. Besides the divide-and-conquer approach, we also explore the Chain of Thought (CoT) strategy, which markedly improves outcomes for certain models, notably GPT-4 and Claude-2.1, with their accuracy rates increasing significantly. However, the CoT strategy has negligible or even detrimental effects on the performance of other models like GPT-3.5 and Gemini-Pro. Secondly, to our surprise, we observe that most models, including GPT-4, struggle to accurately count the total scores for NBA quarters despite showing strong performance in counting NFL quarter scores. This leads us to further investigate the factors that impact the complexity of analytical reasoning tasks with extensive experiments, through which we conclude that task complexity depends on the length of context, the information density, and the presence of related information. Our research provides valuable insights into the complexity of analytical reasoning tasks and potential directions for developing future large language models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.