Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Oct 2023]
Title:Trained Latent Space Navigation to Prevent Lack of Photorealism in Generated Images on Style-based Models
View PDFAbstract:Recent studies on StyleGAN variants show promising performances for various generation tasks. In these models, latent codes have traditionally been manipulated and searched for the desired images. However, this approach sometimes suffers from a lack of photorealism in generated images due to a lack of knowledge about the geometry of the trained latent space. In this paper, we show a simple unsupervised method that provides well-trained local latent subspace, enabling latent code navigation while preserving the photorealism of the generated images. Specifically, the method identifies densely mapped latent spaces and restricts latent manipulations within the local latent subspace. Experimental results demonstrate that images generated within the local latent subspace maintain photorealism even when the latent codes are significantly and repeatedly manipulated. Moreover, experiments show that the method can be applied to latent code optimization for various types of style-based models. Our empirical evidence of the method will benefit applications in style-based models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.