Computer Science > Graphics
[Submitted on 6 Apr 2023 (v1), last revised 21 Aug 2023 (this version, v3)]
Title:Advances in Data-Driven Analysis and Synthesis of 3D Indoor Scenes
View PDFAbstract:This report surveys advances in deep learning-based modeling techniques that address four different 3D indoor scene analysis tasks, as well as synthesis of 3D indoor scenes. We describe different kinds of representations for indoor scenes, various indoor scene datasets available for research in the aforementioned areas, and discuss notable works employing machine learning models for such scene modeling tasks based on these representations. Specifically, we focus on the analysis and synthesis of 3D indoor scenes. With respect to analysis, we focus on four basic scene understanding tasks -- 3D object detection, 3D scene segmentation, 3D scene reconstruction and 3D scene similarity. And for synthesis, we mainly discuss neural scene synthesis works, though also highlighting model-driven methods that allow for human-centric, progressive scene synthesis. We identify the challenges involved in modeling scenes for these tasks and the kind of machinery that needs to be developed to adapt to the data representation, and the task setting in general. For each of these tasks, we provide a comprehensive summary of the state-of-the-art works across different axes such as the choice of data representation, backbone, evaluation metric, input, output, etc., providing an organized review of the literature. Towards the end, we discuss some interesting research directions that have the potential to make a direct impact on the way users interact and engage with these virtual scene models, making them an integral part of the metaverse.
Submission history
From: Akshay Gadi Patil [view email][v1] Thu, 6 Apr 2023 16:11:45 UTC (23,967 KB)
[v2] Thu, 17 Aug 2023 16:06:11 UTC (23,986 KB)
[v3] Mon, 21 Aug 2023 17:34:18 UTC (23,986 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.