Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Sep 2022 (v1), last revised 17 Oct 2023 (this version, v2)]
Title:A Scene-Text Synthesis Engine Achieved Through Learning from Decomposed Real-World Data
View PDFAbstract:Scene-text image synthesis techniques that aim to naturally compose text instances on background scene images are very appealing for training deep neural networks due to their ability to provide accurate and comprehensive annotation information. Prior studies have explored generating synthetic text images on two-dimensional and three-dimensional surfaces using rules derived from real-world observations. Some of these studies have proposed generating scene-text images through learning; however, owing to the absence of a suitable training dataset, unsupervised frameworks have been explored to learn from existing real-world data, which might not yield reliable performance. To ease this dilemma and facilitate research on learning-based scene text synthesis, we introduce DecompST, a real-world dataset prepared from some public benchmarks, containing three types of annotations: quadrilateral-level BBoxes, stroke-level text masks, and text-erased images. Leveraging the DecompST dataset, we propose a Learning-Based Text Synthesis engine (LBTS) that includes a text location proposal network (TLPNet) and a text appearance adaptation network (TAANet). TLPNet first predicts the suitable regions for text embedding, after which TAANet adaptively adjusts the geometry and color of the text instance to match the background context. After training, those networks can be integrated and utilized to generate the synthetic dataset for scene text analysis tasks. Comprehensive experiments were conducted to validate the effectiveness of the proposed LBTS along with existing methods, and the experimental results indicate the proposed LBTS can generate better pretraining data for scene text detectors.
Submission history
From: Zhengmi Tang [view email][v1] Tue, 6 Sep 2022 11:15:58 UTC (17,728 KB)
[v2] Tue, 17 Oct 2023 11:09:43 UTC (26,390 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.