Computer Science > Social and Information Networks
[Submitted on 16 May 2022 (v1), last revised 19 May 2022 (this version, v2)]
Title:PrEF: Percolation-based Evolutionary Framework for the diffusion-source-localization problem in large networks
View PDFAbstract:We assume that the state of a number of nodes in a network could be investigated if necessary, and study what configuration of those nodes could facilitate a better solution for the diffusion-source-localization (DSL) problem. In particular, we formulate a candidate set which contains the diffusion source for sure, and propose the method, Percolation-based Evolutionary Framework (PrEF), to minimize such set. Hence one could further conduct more intensive investigation on only a few nodes to target the source. To achieve that, we first demonstrate that there are some similarities between the DSL problem and the network immunization problem. We find that the minimization of the candidate set is equivalent to the minimization of the order parameter if we view the observer set as the removal node set. Hence, PrEF is developed based on the network percolation and evolutionary algorithm. The effectiveness of the proposed method is validated on both model and empirical networks in regard to varied circumstances. Our results show that the developed approach could achieve a much smaller candidate set compared to the state of the art in almost all cases. Meanwhile, our approach is also more stable, i.e., it has similar performance irrespective of varied infection probabilities, diffusion models, and outbreak ranges. More importantly, our approach might provide a new framework to tackle the DSL problem in extreme large networks.
Submission history
From: Yang Liu [view email][v1] Mon, 16 May 2022 02:15:14 UTC (401 KB)
[v2] Thu, 19 May 2022 03:33:51 UTC (401 KB)
Current browse context:
cs.SI
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.