Mathematics > Number Theory
[Submitted on 8 May 2022 (v1), last revised 4 Dec 2022 (this version, v2)]
Title:Orientations and cycles in supersingular isogeny graphs
View PDFAbstract:The paper concerns several theoretical aspects of oriented supersingular $\ell$-isogeny volcanoes and their relationship to closed walks in the supersingular $\ell$-isogeny graph. Our main result is a bijection between the rims of the union of all oriented supersingular $\ell$-isogeny volcanoes over $\overline{\mathbb{F}}_p$ (up to conjugation of the orientations), and isogeny cycles (non-backtracking closed walks which are not powers of smaller walks) of the supersingular $\ell$-isogeny graph over $\overline{\mathbb{F}}_p$. The exact proof and statement of this bijection are made more intricate by special behaviours arising from extra automorphisms and the ramification of $p$ in certain quadratic orders. We use the bijection to count isogeny cycles of given length in the supersingular $\ell$-isogeny graph exactly as a sum of class numbers of these orders, and also give an explicit upper bound by estimating the class numbers.
Submission history
From: Katherine E. Stange [view email][v1] Sun, 8 May 2022 23:56:32 UTC (3,906 KB)
[v2] Sun, 4 Dec 2022 22:13:35 UTC (4,092 KB)
Current browse context:
math.NT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.