Convex Partitions of Graphs induced by Paths of Order ThreeArticle
Authors: C. C. Centeno 1; S. Dantas 2; M. C. Dourado 1; Dieter Rautenbach 3; Jayme Luiz Szwarcfiter 1
NULL##NULL##NULL##NULL##NULL
C. C. Centeno;S. Dantas;M. C. Dourado;Dieter Rautenbach;Jayme Luiz Szwarcfiter
1 Instituto de Matemática da Universidade Federal do Rio de Janeiro
2 Instituto de Matematica [Fluminense]
3 Institut für Optimierung und Operations Research
A set C of vertices of a graph G is P(3)-convex if v is an element of C for every path uvw in G with u, w is an element of C. We prove that it is NP-complete to decide for a given graph G and a given integer p whether the vertex set of G can be partitioned into p non-empty disjoint P(3)-convex sets. Furthermore, we study such partitions for a variety of graph classes.
João Vinicius C. Thompson;Loana T. Nogueira;Fábio Protti;Raquel S. F. Bravo;Mitre C. Dourado;et al., 2020, A general framework for path convexities, arXiv (Cornell University), 43, 5, pp. 994-1009, 10.1007/s10878-020-00618-9, http://arxiv.org/abs/1702.06112.
Lucía M. González;Luciano N. Grippo;Martín D. Safe;Vinicius F. dos Santos, 2020, Covering graphs with convex sets and partitioning graphs into convex sets, arXiv (Cornell University), 158, pp. 105944, 10.1016/j.ipl.2020.105944, http://arxiv.org/abs/1907.01581.