A Maximum Parsimony Principle for Multichromosomal Complex Genome Rearrangements

A Maximum Parsimony Principle for Multichromosomal Complex Genome Rearrangements

Authors Pijus Simonaitis , Benjamin J. Raphael



PDF
Thumbnail PDF

File

LIPIcs.WABI.2022.21.pdf
  • Filesize: 0.97 MB
  • 22 pages

Document Identifiers

Author Details

Pijus Simonaitis
  • Department of Computer Science, Princeton University, Princeton, NJ, USA
Benjamin J. Raphael
  • Department of Computer Science, Princeton University, Princeton, NJ, USA

Cite As Get BibTex

Pijus Simonaitis and Benjamin J. Raphael. A Maximum Parsimony Principle for Multichromosomal Complex Genome Rearrangements. In 22nd International Workshop on Algorithms in Bioinformatics (WABI 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 242, pp. 21:1-21:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.WABI.2022.21

Abstract

Motivation. Complex genome rearrangements, such as chromothripsis and chromoplexy, are common in cancer and have also been reported in individuals with various developmental and neurological disorders. These mutations are proposed to involve simultaneous breakage of the genome at many loci and rejoining of these breaks that produce highly rearranged genomes. Since genome sequencing measures only the novel adjacencies present at the time of sequencing, determining whether a collection of novel adjacencies resulted from a complex rearrangement is a complicated and ill-posed problem. Current heuristics for this problem often result in the inference of complex rearrangements that affect many chromosomes.
Results. We introduce a model for complex rearrangements that builds upon the methods developed for analyzing simple genome rearrangements such as inversions and translocations. While nearly all of these existing methods use a maximum parsimony assumption of minimizing the number of rearrangements, we propose an alternative maximum parsimony principle based on minimizing the number of chromosomes involved in a rearrangement scenario. We show that our model leads to inference of more plausible sequences of rearrangements that better explain a complex congenital rearrangement in a human genome and chromothripsis events in 22 cancer genomes.

Subject Classification

ACM Subject Classification
  • Applied computing → Bioinformatics
Keywords
  • Genome rearrangements
  • maximum parsimony
  • cancer evolution
  • chromothripsis
  • structural variation
  • affected chromosomes

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Sergey Aganezov, Sara Goodwin, Rachel M Sherman, Fritz J Sedlazeck, Gayatri Arun, Sonam Bhatia, Isac Lee, Melanie Kirsche, Robert Wappel, Melissa Kramer, et al. Comprehensive analysis of structural variants in breast cancer genomes using single-molecule sequencing. Genome research, 30(9):1258-1273, 2020. Google Scholar
  2. Sergey Aganezov and Benjamin J Raphael. Reconstruction of clone-and haplotype-specific cancer genome karyotypes from bulk tumor samples. Genome research, 30(9):1274-1290, 2020. Google Scholar
  3. Max A Alekseyev and Pavel A Pevzner. Are there rearrangement hotspots in the human genome? PLoS Computational Biology, 3(11):e209, 2007. Google Scholar
  4. Max A Alekseyev and Pavel A Pevzner. Multi-break rearrangements and chromosomal evolution. Theoretical Computer Science, 395(2-3):193-202, 2008. Google Scholar
  5. Sylvan C Baca, Davide Prandi, Michael S Lawrence, Juan Miguel Mosquera, Alessandro Romanel, Yotam Drier, Kyung Park, Naoki Kitabayashi, Theresa Y MacDonald, Mahmoud Ghandi, et al. Punctuated evolution of prostate cancer genomes. Cell, 153(3):666-677, 2013. Google Scholar
  6. Vineet Bafna and Pavel A Pevzner. Genome rearrangements and sorting by reversals. SIAM Journal on Computing, 25(2):272-289, 1996. Google Scholar
  7. Lisui Bao, Xiaoming Zhong, Yang Yang, and Lixing Yang. Mutational signatures of complex genomic rearrangements in human cancer. bioRxiv, 2021. Google Scholar
  8. Julie M Behr, Xiaotong Yao, Kevin Hadi, Huasong Tian, Aditya Deshpande, Joel Rosiene, Titia de Lange, and Marcin Imielinski. Loose ends in cancer genome structure. bioRxiv, 2021. Google Scholar
  9. Priscila Biller, Laurent Guéguen, Carole Knibbe, and Eric Tannier. Breaking good: accounting for fragility of genomic regions in rearrangement distance estimation. Genome Biology and Evolution, 8(5):1427-1439, 2016. Google Scholar
  10. Laurent Bulteau, Guillaume Fertin, Géraldine Jean, and Christian Komusiewicz. Sorting by multi-cut rearrangements. Algorithms, 14(6):169, 2021. Google Scholar
  11. Ryan L Collins, Harrison Brand, Claire E Redin, Carrie Hanscom, Caroline Antolik, Matthew R Stone, Joseph T Glessner, Tamara Mason, Giulia Pregno, Naghmeh Dorrani, et al. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome. Genome biology, 18(1):1-21, 2017. Google Scholar
  12. Isidro Cortés-Ciriano, Jake June-Koo Lee, Ruibin Xi, Dhawal Jain, Youngsook L Jung, Lixing Yang, Dmitry Gordenin, Leszek J Klimczak, Cheng-Zhong Zhang, David S Pellman, et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nature genetics, 52(3):331-341, 2020. Google Scholar
  13. Jesper Eisfeldt, Maria Pettersson, Anna Petri, Daniel Nilsson, Lars Feuk, and Anna Lindstrand. Hybrid sequencing resolves two germline ultra-complex chromosomal rearrangements consisting of 137 breakpoint junctions in a single carrier. Human Genetics, pages 1-16, 2020. Google Scholar
  14. Jesper Eisfeldt, Maria Pettersson, Francesco Vezzi, Josephine Wincent, Max Käller, Joel Gruselius, Daniel Nilsson, Elisabeth Syk Lundberg, Claudia MB Carvalho, and Anna Lindstrand. Comprehensive structural variation genome map of individuals carrying complex chromosomal rearrangements. PLoS genetics, 15(2):e1007858, 2019. Google Scholar
  15. Chris D Greenman, Luca Penso-Dolfin, and Taoyang Wu. The complexity of genome rearrangement combinatorics under the infinite sites model. Journal of Theoretical Biology, 501:110335, 2020. Google Scholar
  16. Kevin Hadi, Xiaotong Yao, Julie M Behr, Aditya Deshpande, Charalampos Xanthopoulakis, Huasong Tian, Sarah Kudman, Joel Rosiene, Madison Darmofal, Joseph DeRose, et al. Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs. Cell, 183(1):197-210, 2020. Google Scholar
  17. Sridhar Hannenhalli and Pavel A Pevzner. Transforming men into mice (polynomial algorithm for genomic distance problem). In Proceedings of IEEE 36th annual foundations of computer science, pages 581-592. IEEE, 1995. Google Scholar
  18. Sridhar Hannenhalli and Pavel A Pevzner. Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. Journal of the ACM (JACM), 46(1):1-27, 1999. Google Scholar
  19. Marcus Kinsella, Anand Patel, and Vineet Bafna. The elusive evidence for chromothripsis. Nucleic acids research, 42(13):8231-8242, 2014. Google Scholar
  20. Martin Krzywinski, Jacqueline Schein, Inanc Birol, Joseph Connors, Randy Gascoyne, Doug Horsman, Steven J Jones, and Marco A Marra. Circos: an information aesthetic for comparative genomics. Genome research, 19(9):1639-1645, 2009. Google Scholar
  21. Yeonghun Lee and Hyunju Lee. Integrative reconstruction of cancer genome karyotypes using InfoGenomeR. Nature communications, 12(1):1-13, 2021. Google Scholar
  22. Mitchell L Leibowitz, Stamatis Papathanasiou, Phillip A Doerfler, Logan J Blaine, Lili Sun, Yu Yao, Cheng-Zhong Zhang, Mitchell J Weiss, and David Pellman. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing. Nature Genetics, 53(6):895-905, 2021. Google Scholar
  23. Yilong Li, Nicola D Roberts, Jeremiah A Wala, Ofer Shapira, Steven E Schumacher, Kiran Kumar, Ekta Khurana, Sebastian Waszak, Jan O Korbel, James E Haber, et al. Patterns of somatic structural variation in human cancer genomes. Nature, 578(7793):112-121, 2020. Google Scholar
  24. Pengfei Liu, Ayelet Erez, Sandesh C Sreenath Nagamani, Shweta U Dhar, Katarzyna E Kołodziejska, Avinash V Dharmadhikari, M Lance Cooper, Joanna Wiszniewska, Feng Zhang, Marjorie A Withers, et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell, 146(6):889-903, 2011. Google Scholar
  25. Jian Ma, Aakrosh Ratan, Brian J Raney, Bernard B Suh, Webb Miller, and David Haussler. The infinite sites model of genome evolution. Proceedings of the National Academy of Sciences, 105(38):14254-14261, 2008. Google Scholar
  26. Layla Oesper, Simone Dantas, and Benjamin J Raphael. Identifying simultaneous rearrangements in cancer genomes. Bioinformatics, 34:346-352, 2018. Google Scholar
  27. R Gonzalo Parra, Moritz J Przybilla, Milena Simovic, Hana Susak, Manasi Ratnaparkhe, John KL Wong, Verena Koerber, Philipp Mallm, Martin Sill, Thorsten Kolb, et al. Single cell multi-omics analysis of chromothriptic medulloblastoma highlights genomic and transcriptomic consequences of genome instability. bioRxiv, 2021. Google Scholar
  28. F Pellestor, JB Gaillard, A Schneider, J Puechberty, and V Gatinois. Chromoanagenesis, the mechanisms of a genomic chaos. In Seminars in Cell & Developmental Biology. Elsevier, 2021. Google Scholar
  29. Pavel Pevzner and Glenn Tesler. Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proceedings of the National Academy of Sciences, 100(13):7672-7677, 2003. Google Scholar
  30. Morasha Plesser Duvdevani, Maria Pettersson, Jesper Eisfeldt, Ortal Avraham, Judith Dagan, Ayala Frumkin, James R Lupski, Anna Lindstrand, and Tamar Harel. Whole-genome sequencing reveals complex chromosome rearrangement disrupting NIPBL in infant with Cornelia de Lange syndrome. American Journal of Medical Genetics Part A, 182(5):1143-1151, 2020. Google Scholar
  31. Claire Redin, Harrison Brand, Ryan L Collins, Tammy Kammin, Elyse Mitchell, Jennelle C Hodge, Carrie Hanscom, Vamsee Pillalamarri, Catarina M Seabra, Mary-Alice Abbott, et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nature genetics, 49(1):36-45, 2017. Google Scholar
  32. Pijus Simonaitis, Annie Chateau, and Krister Swenson. Weighted minimum-length rearrangement scenarios. In 19th International Workshop on Algorithms in Bioinformatics (WABI), pages 13-1, 2019. Google Scholar
  33. Philip J Stephens, Chris D Greenman, Beiyuan Fu, Fengtang Yang, Graham R Bignell, Laura J Mudie, Erin D Pleasance, King Wai Lau, David Beare, Lucy A Stebbings, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. cell, 144(1):27-40, 2011. Google Scholar
  34. Kristen M Turner, Viraj Deshpande, Doruk Beyter, Tomoyuki Koga, Jessica Rusert, Catherine Lee, Bin Li, Karen Arden, Bing Ren, David A Nathanson, et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature, 543(7643):122-125, 2017. Google Scholar
  35. Neil T Umbreit, Cheng-Zhong Zhang, Luke D Lynch, Logan J Blaine, Anna M Cheng, Richard Tourdot, Lili Sun, Hannah F Almubarak, Kim Judge, Thomas J Mitchell, et al. Mechanisms generating cancer genome complexity from a single cell division error. Science, 368(6488), 2020. Google Scholar
  36. Natalia Voronina, John KL Wong, Daniel Hübschmann, Mario Hlevnjak, Sebastian Uhrig, Christoph E Heilig, Peter Horak, Simon Kreutzfeldt, Andreas Mock, Albrecht Stenzinger, et al. The landscape of chromothripsis across adult cancer types. Nature communications, 11(1):1-13, 2020. Google Scholar
  37. Sophia Yancopoulos, Oliver Attie, and Richard Friedberg. Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics, 21(16):3340-3346, 2005. Google Scholar
  38. Xiao Yin and Daming Zhu. Sorting genomes by reversals and translocations. In 2009 Asia-Pacific Conference on Information Processing, volume 2, pages 391-394. IEEE, 2009. Google Scholar
  39. Ron Zeira and Ron Shamir. Sorting cancer karyotypes using double-cut-and-joins, duplications and deletions. Bioinformatics, 37(11):1489-1496, 2021. Google Scholar
  40. Cinthya J Zepeda-Mendoza and Cynthia C Morton. The iceberg under water: unexplored complexity of chromoanagenesis in congenital disorders. The American Journal of Human Genetics, 104(4):565-577, 2019. Google Scholar
  41. Cheng-Zhong Zhang, Alexander Spektor, Hauke Cornils, Joshua M Francis, Emily K Jackson, Shiwei Liu, Matthew Meyerson, and David Pellman. Chromothripsis from DNA damage in micronuclei. Nature, 522(7555):179-184, 2015. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail