The Covering Canadian Traveller Problem Revisited

The Covering Canadian Traveller Problem Revisited

Authors Niklas Hahn , Michalis Xefteris



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2023.53.pdf
  • Filesize: 0.78 MB
  • 12 pages

Document Identifiers

Author Details

Niklas Hahn
  • Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
Michalis Xefteris
  • Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Acknowledgements

We would like to thank Evripidis Bampis and Bruno Escoffier for providing useful comments on the manuscript.

Cite As Get BibTex

Niklas Hahn and Michalis Xefteris. The Covering Canadian Traveller Problem Revisited. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 53:1-53:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.MFCS.2023.53

Abstract

In this paper, we consider the k-Covering Canadian Traveller Problem (k-CCTP), which can be seen as a variant of the Travelling Salesperson Problem. The goal of k-CCTP is finding the shortest tour for a traveller to visit a set of locations in a given graph and return to the origin. Crucially, unknown to the traveller, up to k edges of the graph are blocked and the traveller only discovers blocked edges online at one of their respective endpoints. The currently best known upper bound for k-CCTP is O(√k) which was shown in [Huang and Liao, ISAAC '12]. We improve this polynomial bound to a logarithmic one by presenting a deterministic O(log k)-competitive algorithm that runs in polynomial time. Further, we demonstrate the tightness of our analysis by giving a lower bound instance for our algorithm.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Online Algorithm
  • Canadian Traveller Problem
  • Travelling Salesperson Problem
  • Graph Exploration

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Vahid Akbari and Davood Shiri. Weighted online minimum latency problem with edge uncertainty. Europ. J. Oper. Res., 295(1):51-65, 2021. Google Scholar
  2. Norbert Ascheuer, Martin Grötschel, Sven O. Krumke, and Jörg Rambau. Combinatorial online optimization. In Operations Research Proceedings 1998, pages 21-37, 1999. Google Scholar
  3. Giorgio Ausiello, Marc Demange, Luigi Laura, and Vangelis Paschos. Algorithms for the on-line quota traveling salesman problem. Inf. Process. Lett., 92(2):89-94, 2004. Google Scholar
  4. Giorgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen Stougie, and Maurizio Talamo. Algorithms for the on-line travelling salesman. Synthetic Metals, 1999. Google Scholar
  5. Evripidis Bampis, Bruno Escoffier, and Michalis Xefteris. Canadian traveller problem with predictions. In Parinya Chalermsook and Bundit Laekhanukit, editors, Approximation and Online Algorithms, pages 116-133, Cham, 2022. Springer International Publishing. Google Scholar
  6. Amotz Bar-Noy and Baruch Schieber. The canadian traveller problem. In Proc. 2nd Symp. Disc. Algorithms (SODA), pages 261-270, 1991. Google Scholar
  7. Marco Bender and Stephan Westphal. An optimal randomized online algorithm for the k-canadian traveller problem on node-disjoint paths. J. Comb. Opt., 30, July 2013. Google Scholar
  8. Pierre Bergé, Julien Hemery, Arpad Rimmel, and Joanna Tomasik. On the competitiveness of memoryless strategies for the k-Canadian Traveller Problem. In Int. Conf. Comb. Opt. Appl. (COCOA), December 2018. Google Scholar
  9. Alexander Birx, Yann Disser, Alexander V. Hopp, and Christina Karousatou. An improved lower bound for competitive graph exploration. Theor. Comp. Sci., 868:65-86, 2021. Google Scholar
  10. Antje Bjelde, Jan Hackfeld, Yann Disser, Christoph Hansknecht, Maarten Lipmann, Julie Meißner, Miriam Schlöter, Kevin Schewior, and Leen Stougie. Tight bounds for online TSP on the line. ACM Trans. Algorithms, 17(1):3:1-3:58, 2021. Google Scholar
  11. Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. In Cambridge University Press, 1998. Google Scholar
  12. Sebastian Brandt, Klaus-Tycho Foerster, Jonathan Maurer, and Roger Wattenhofer. Online graph exploration on a restricted graph class: Optimal solutions for tadpole graphs. Theor. Comp. Sci., 839:176-185, 2020. Google Scholar
  13. Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. Operations Research Forum, 3, 1976. Google Scholar
  14. Erik D. Demaine, Yamming Huang, Chung-Shou Liao, and Kunihiko Sadakane. Approximating the canadian traveller problem with online randomization. Algorithmica, 83(5):1524-1543, 2021. Google Scholar
  15. Robin Fritsch. Online graph exploration on trees, unicyclic graphs and cactus graphs. Inf. Process. Lett., 168:106096, 2020. Google Scholar
  16. Michael T. Goodrich and Roberto Tamassia. Algorithm design and applications. Wiley, 2015. Google Scholar
  17. Yamming Huang and Chung-Shou Liao. The canadian traveller problem revisited. In Proc. 23rd Int. Symp. Algorithms and Comp. (ISAAC), pages 352-361, 2012. Google Scholar
  18. Cor A.J. Hurkens and Gerhard Woeginger. On the nearest neighbor rule for the traveling salesman problem. Oper. Res. Lett., 32(1):1-4, 2004. Google Scholar
  19. Patrick Jaillet and Xin Lu. Online Traveling Salesman Problems with Flexibility. In Models and Algorithms for Optimization in Logistics, volume 9261 of Dagstuhl Seminar Proceedings (DagSemProc), pages 1-4, 2009. Google Scholar
  20. Bala Kalyanasundaram and Kirk R. Pruhs. Constructing competitive tours from local information. Theor. Comp. Sci., 130(1):125-138, 1994. Google Scholar
  21. Allan Larsen, Oli Madsen, and Marius Solomon. The a priori dynamic traveling salesman problem with time windows. Transp. Sci., 38:459-472, November 2004. Google Scholar
  22. Chung-Shou Liao and Yamming Huang. The covering canadian traveller problem. Theor. Comp. Sci., 530:80-88, 2014. Google Scholar
  23. Nicole Megow, Kurt Mehlhorn, and Pascal Schweitzer. Online graph exploration: New results on old and new algorithms. Theor. Comp. Sci., 463:62-72, 2012. Google Scholar
  24. Shuichi Miyazaki, Naoyuki Morimoto, and Yasuo Okabe. The online graph exploration problem on restricted graphs. IEICE Transactions, 92-D:1620-1627, September 2009. Google Scholar
  25. Evdokia Nikolova and David R. Karger. Route planning under uncertainty: The canadian traveller problem. In Proc. 23rd Conf. Artif. Intell. (AAAI), pages 969-974, 2008. Google Scholar
  26. Christos H. Papadimitriou and Mihalis Yannakakis. Shortest paths without a map. Theor. Comput. Sci., 84(1):127-150, 1991. Google Scholar
  27. Harilaos N. Psaraftis, Marius M. Solomon, Thomas L. Magnanti, and Tai-Up Kim. Routing and scheduling on a shoreline with release times. Manag. Sci., 36(2):212-223, 1990. Google Scholar
  28. Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis. An analysis of several heuristics for the traveling salesman problem, pages 45-69. Springer Netherlands, 2009. Google Scholar
  29. Davood Shiri, Vahid Akbari, and F. Sibel Salman. Online routing and scheduling of search-and-rescue teams. OR Spectrum, 42:1-30, September 2020. Google Scholar
  30. Davood Shiri and F. Sibel Salman. On the online multi-agent O–D k-Canadian Traveler Problem. J. Comb. Opt., 34, August 2017. Google Scholar
  31. Davood Shiri and F. Sibel Salman. On the randomized online strategies for the k-canadian traveler problem. J. Comb. Opt., 38:254-267, 2019. Google Scholar
  32. Alejandro Toriello, William Haskell, Michael Poremba, and Daniel Epstein. A dynamic traveling salesman problem with stochastic arc costs. Oper. Res., 62, October 2014. Google Scholar
  33. Stephan Westphal. A note on the k-canadian traveller problem. Inf. Process. Lett., 106(3):87-89, 2008. Google Scholar
  34. Yinfeng Xu, Maolin Hu, Bing Su, Binhai Zhu, and Zhijun Zhu. The canadian traveller problem and its competitive analysis. J. Comb. Optim., 18(2):195-205, 2009. Google Scholar
  35. Huili Zhang, Weitian Tong, Yinfeng Xu, and Guohui Lin. The steiner traveling salesman problem with online edge blockages. Europ. J. Oper. Res., 243(1):30-40, 2015. Google Scholar
  36. Huili Zhang, Weitian Tong, Yinfeng Xu, and Guohui Lin. The steiner traveling salesman problem with online advanced edge blockages. Computers & Operations Research, 70:26-38, 2016. Google Scholar
  37. Yubai Zhang, Zhao Zhang, Zhaohui Liu, and Qirong Chen. An asymptotically tight online algorithm for m-steiner traveling salesman problem. Inf. Process. Lett., 174:106177, 2022. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail