LIPIcs.ITCS.2022.85.pdf
- Filesize: 0.81 MB
- 25 pages
Heuristica and Pessiland are "worlds" of average-case complexity [Impagliazzo95] that are considered unlikely but that current techniques are unable to rule out. Recently, [Hirahara20] considered a PH (Polynomial Hierarchy) analogue of Heuristica, and showed that to rule it out, it would be sufficient to prove the NP-completeness of the problem GapMINKT^PH of estimating the PH-oracle time-bounded Kolmogorov complexity of a string. In this work, we analogously define "PH Pessiland" to be a world where PH is hard on average but PH-computable pseudo-random generators do not exist. We unconditionally rule out PH-Pessiland in both non-uniform and uniform settings, by showing that the distributional problem of computing PH-oracle time-bounded Kolmogorov complexity of a string over the uniform distribution is complete for an (error-prone) average-case analogue of PH. Moreover, we show the equivalence between error-prone average-case hardness of PH and the existence of PH-computable pseudorandom generators.
Feedback for Dagstuhl Publishing