Additive First-Order Queries

Additive First-Order Queries

Authors Gerald Berger, Martin Otto, Andreas Pieris, Dimitri Surinx, Jan Van den Bussche



PDF
Thumbnail PDF

File

LIPIcs.ICDT.2019.19.pdf
  • Filesize: 497 kB
  • 14 pages

Document Identifiers

Author Details

Gerald Berger
  • TU Wien, Austria
Martin Otto
  • TU Darmstadt, Germany
Andreas Pieris
  • University of Edinburgh, Scotland
Dimitri Surinx
  • Hasselt University, Belgium
Jan Van den Bussche
  • Hasselt University, Belgium

Cite As Get BibTex

Gerald Berger, Martin Otto, Andreas Pieris, Dimitri Surinx, and Jan Van den Bussche. Additive First-Order Queries. In 22nd International Conference on Database Theory (ICDT 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 127, pp. 19:1-19:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019) https://doi.org/10.4230/LIPIcs.ICDT.2019.19

Abstract

A database query q is called additive if q(A U B) = q(A) U q(B) for domain-disjoint input databases A and B. Additivity allows the computation of the query result to be parallelised over the connected components of the input database. We define the "connected formulas" as a syntactic fragment of first-order logic, and show that a first-order query is additive if and only if it expressible by a connected formula. This characterisation specializes to the guarded fragment of first-order logic. We also show that additivity is decidable for formulas of the guarded fragment, establish the computational complexity, and do the same for positive-existential formulas. Our results hold when restricting attention to finite structures, as is common in database theory, but also hold in the unrestricted setting.

Subject Classification

ACM Subject Classification
  • Information systems → Query languages
Keywords
  • Expressive power

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995. Google Scholar
  2. N. Alechina and Y. Gurevich. Syntax vs semantics on finite structures. In J. Mychielski, G. Rozenberg, and A. Salomaa, editors, Structures in Logic and Computer Science, volume 1261 of Lecture Notes in Computer Science, pages 14-33. Springer, 1997. Google Scholar
  3. T.J. Ameloot, B. Ketsman, F. Neven, and D. Zinn. Weaker forms of monotonicity for declarative networking: A more fine-grained answer to the CALM-conjecture. ACM Transactions on Database Systems, 40(4):article 21, 2016. Google Scholar
  4. T.J. Ameloot, B. Ketsman, F. Neven, and D. Zinn. Datalog queries distributing over components. ACM Transactions on Computational Logic, 18:article 5, 2017. Google Scholar
  5. H. Andréka, I. Németi, and J. van Benthem. Modal languages and bounded fragments of predicate logic. Journal of Philosophical Logic, 27(3):217-274, 1998. Google Scholar
  6. G. Berger and A. Pieris. Ontology-mediated queries distributing over components. In S. Kambhampati, editor, Proceedings 25th International Joint Conference on Artificial Intelligence, pages 943-949. IJCAI/AAAI Press, 2016. Google Scholar
  7. M. Bienvenu, C. Lutz, and F. Wolter. Query containment in description logics reconsidered. In G. Brewka, T. Eiter, and S.A. McIlraith, editors, Principles of Knowledge Representation and Reasoning: Proceedings 13th KR. AAAI Press, 2012. Google Scholar
  8. H. Gaifman. On local and nonlocal properties. In Proceedings of the Herbrand symposium (Marseilles, 1981), volume 107 of Studies in Logic and the Foundations of Mathematics. North-Holland, 1982. Google Scholar
  9. E. Grädel. On the restraining power of guards. Journal of Symbolic Logic, 64(4):1719-1742, 1999. Google Scholar
  10. E. Grädel and I. Walukiewicz. Guarded fixed point logic. In Proceedings 14th Annual IEEE Symposium on Logic in Computer Science, pages 45-54, 1999. Google Scholar
  11. J.M. Hellerstein. The declarative imperative: Experiences and conjectures in distributed logic. SIGMOD Record, 39(1):5-19, 2010. Google Scholar
  12. D. Leinders, M. Marx, J. Tyszkiewicz, and J. Van den Bussche. The semijoin algebra and the guarded fragment. Journal of Logic, Language and Information, 14:331-343, 2005. Google Scholar
  13. D. Leinders and J. Van den Bussche. On the complexity of division and set joins in the relational algebra. J. Comput. Syst. Sci., 73(4):538-549, 2007. Google Scholar
  14. M. Otto. Elementary proof of the van Benthem-Rosen characterization theorem. Fachbereich Informatik online preprint 2342, TU Darmstadt, 2004. URL: http://www3.mathematik.tu-darmstadt.de/fb/mathe/preprints.html.
  15. M. Otto. Modal and guarded characterisation theorems over finite transition systems. Annals of Pure and Applied Logic, 130:173-205, 2004. Google Scholar
  16. M. Otto. Bisimulation invariance and finite structures. In Z. Chatzidakis, P. Koepke, and W. Pohlers, editors, Logic Colloquium '02, volume 27 of Lecture Notes in Logic, pages 276-298. Cambridge University Press, 2006. Google Scholar
  17. E. Rosen. Modal logic over finite structures. Journal of Logic, Language and Information, 5:427-439, 1997. Google Scholar
  18. E. Rosen. Some aspects of model theory and finite structures. Bulletin of Symbolic Logic, 8:380-403, 2002. Google Scholar
  19. Y. Sagiv and M. Yannakakis. Equivalence among Relational Expressions with the Union and Difference Operators. J. ACM, 27(4):633-655, 1980. Google Scholar
  20. D. Surinx, J. Van den Bussche, and D. Van Gucht. The primitivity of operators in the algebra of binary relations under conjunctions of containments. In Proceedings 32nd Annual ACM/IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, 2017. Google Scholar
  21. D. Surinx, J. Van den Bussche, and D. Van Gucht. A framework for comparing query languages in their ability to express boolean queries. In Foundations of Information and Knowledge Systems, pages 360-378, 2018. Google Scholar
  22. J.D. Ullman. Principles of Database and Knowledge-Base Systems, volume I. Computer Science Press, 1988. Google Scholar
  23. J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, Naples, 1983. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail