Nondeterministic Interactive Refutations for Nearest Boolean Vector

Nondeterministic Interactive Refutations for Nearest Boolean Vector

Authors Andrej Bogdanov , Alon Rosen



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2023.28.pdf
  • Filesize: 0.71 MB
  • 14 pages

Document Identifiers

Author Details

Andrej Bogdanov
  • University of Ottawa, Canada
Alon Rosen
  • Bocconi University, Milano, Italy
  • Reichman University, Herzliya, Israel

Acknowledgements

We are grateful to Chris Jones for useful advice and feedback. Part of this work was done while the first author was affiliated with and the second author visited the Chinese University of Hong Kong.

Cite As Get BibTex

Andrej Bogdanov and Alon Rosen. Nondeterministic Interactive Refutations for Nearest Boolean Vector. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 28:1-28:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.ICALP.2023.28

Abstract

Most n-dimensional subspaces 𝒜 of ℝ^m are Ω(√m)-far from the Boolean cube {-1, 1}^m when n < cm for some constant c > 0. How hard is it to certify that the Nearest Boolean Vector (NBV) is at least γ √m far from a given random 𝒜?
Certifying NBV instances is relevant to the computational complexity of approximating the Sherrington-Kirkpatrick Hamiltonian, i.e. maximizing x^TAx over the Boolean cube for a matrix A sampled from the Gaussian Orthogonal Ensemble. The connection was discovered by Mohanty, Raghavendra, and Xu (STOC 2020). Improving on their work, Ghosh, Jeronimo, Jones, Potechin, and Rajendran (FOCS 2020) showed that certification is not possible in the sum-of-squares framework when m ≪ n^1.5, even with distance γ = 0. 
We present a non-deterministic interactive certification algorithm for NBV when m ≫ n log n and γ ≪ 1/mn^1.5. The algorithm is obtained by adapting a public-key encryption scheme of Ajtai and Dwork.

Subject Classification

ACM Subject Classification
  • Theory of computation → Interactive proof systems
  • Theory of computation → Problems, reductions and completeness
  • Theory of computation → Cryptographic primitives
Keywords
  • average-case complexity
  • statistical zero-knowledge
  • nondeterministic refutation
  • Sherrington-Kirkpatrick Hamiltonian
  • complexity of statistical inference
  • lattice smoothing

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Dorit Aharonov and Oded Regev. Lattice problems in NP ∩ coNP. J. ACM, 52(5):749-765, September 2005. URL: https://doi.org/10.1145/1089023.1089025.
  2. Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, 1997. Google Scholar
  3. Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K. Kothari, Ankur Moitra, and Aaron Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. SIAM Journal on Computing, 48(2):687-735, 2019. URL: https://doi.org/10.1137/17M1138236.
  4. Andrej Bogdanov, Miguel Cueto Noval, Charlotte Hoffmann, and Alon Rosen. Public-key encryption from homogeneous clwe. Cryptology ePrint Archive, Paper 2022/093, 2022. URL: https://eprint.iacr.org/2022/093.
  5. Matthew S. Brennan and Guy Bresler. Reducibility and statistical-computational gaps from secret leakage. In Conference on Learning Theory, COLT 2020, volume 125 of Proceedings of Machine Learning Research, pages 648-847. PMLR, 2020. URL: http://proceedings.mlr.press/v125/brennan20a.html.
  6. Kenneth R. Davidson and Stanislaw J. Szarek. Chapter 8 - local operator theory, random matrices and banach spaces. In W.B. Johnson and J. Lindenstrauss, editors, Handbook of the Geometry of Banach Spaces, volume 1 of Handbook of the Geometry of Banach Spaces, pages 317-366. Elsevier Science B.V., 2001. URL: https://doi.org/10.1016/S1874-5849(01)80010-3.
  7. U. Feige, J. H. Kim, and E. Ofek. Witnesses for non-satisfiability of dense random 3CNF formulas. In 47th Annual IEEE Symposium on Foundations of Computer Science, 2006. URL: https://doi.org/10.1109/FOCS.2006.78.
  8. Mrinalkanti Ghosh, Fernando Granha Jeronimo, Chris Jones, Aaron Potechin, and Goutham Rajendran. Sum-of-squares lower bounds for sherrington-kirkpatrick via planted affine planes. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 954-965. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00093.
  9. Oded Goldreich. Average Case Complexity, Revisited, pages 422-450. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. URL: https://doi.org/10.1007/978-3-642-22670-0_29.
  10. Oded Goldreich, Amit Sahai, and Salil Vadhan. Can statistical zero knowledge be made non-interactive? or on the relationship of szk and niszk. In Michael Wiener, editor, Advances in Cryptology - CRYPTO' 99, pages 467-484, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. Google Scholar
  11. Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the parity. Theor. Comput. Sci., 259(1):613-622, May 2001. Google Scholar
  12. Venkatesan Guruswami, Pravesh K. Kothari, and Peter Manohar. Algorithms and certificates for boolean CSP refutation: smoothed is no harder than random. In 54th Annual ACM SIGACT Symposium on Theory of Computing, 2022. URL: https://doi.org/10.1145/3519935.3519955.
  13. R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way functions. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC '89, pages 12-24, New York, NY, USA, 1989. Association for Computing Machinery. URL: https://doi.org/10.1145/73007.73009.
  14. Svante Janson. Tail bounds for sums of geometric and exponential variables. Statistics & Probability Letters, 135:1-6, 2018. URL: https://doi.org/10.1016/j.spl.2017.11.017.
  15. H.W. Jr. Lenstra, A.K. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261:515-534, 1982. URL: http://eudml.org/doc/182903.
  16. Leonid A. Levin. Average case complete problems. SIAM J. Comput., 15(1):285-286, 1986. URL: https://doi.org/10.1137/0215020.
  17. Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique shortest vectors, and the minimum distance problem. In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume 5677 of Lecture Notes in Computer Science, pages 577-594. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-03356-8_34.
  18. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian measures. SIAM Journal on Computing, 37(1):267-302, 2007. URL: https://doi.org/10.1137/S0097539705447360.
  19. Sidhanth Mohanty, Prasad Raghavendra, and Jeff Xu. Lifting sum-of-squares lower bounds: Degree-2 to degree-4. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages 840-853, New York, NY, USA, 2020. Association for Computing Machinery. URL: https://doi.org/10.1145/3357713.3384319.
  20. Andrea Montanari. Optimization of the Sherrington-Kirkpatrick Hamiltonian. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), 2019. URL: https://doi.org/10.1109/FOCS.2019.00087.
  21. G. Parisi. Infinite number of order parameters for spin-glasses. Phys. Rev. Lett., 43:1754-1756, December 1979. URL: https://doi.org/10.1103/PhysRevLett.43.1754.
  22. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: Extended abstract. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, STOC '09, pages 333-342, New York, NY, USA, 2009. Association for Computing Machinery. URL: https://doi.org/10.1145/1536414.1536461.
  23. Aaron Potechin, Paxton Turner, Prayaag Venkat, and Alexander S. Wein. Near-optimal fitting of ellipsoids to random points, 2022. URL: https://doi.org/10.48550/ARXIV.2208.09493.
  24. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6), September 2009. URL: https://doi.org/10.1145/1568318.1568324.
  25. B. A. Rogozin. On the increase of dispersion of sums of independent random variables. Theory of Probability & Its Applications, 6(1):97-99, 1961. URL: https://doi.org/10.1137/1106010.
  26. Amit Sahai and Salil Vadhan. A complete problem for statistical zero knowledge. J. ACM, 50(2):196-249, March 2003. URL: https://doi.org/10.1145/636865.636868.
  27. Grant Schoenebeck. Linear level lasserre lower bounds for certain k-csps. In Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS '08, pages 593-602, USA, 2008. IEEE Computer Society. URL: https://doi.org/10.1109/FOCS.2008.74.
  28. Michel Talagrand. The Parisi Formula, pages 349-474. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. URL: https://doi.org/10.1007/978-3-642-22253-5_7.
  29. Luca Trevisan. The program-enumeration bottleneck in average-case complexity theory. In 2010 IEEE 25th Annual Conference on Computational Complexity, pages 88-95, 2010. URL: https://doi.org/10.1109/CCC.2010.18.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail