Mirroring Call-By-Need, or Values Acting Silly

Mirroring Call-By-Need, or Values Acting Silly

Authors Beniamino Accattoli , Adrienne Lancelot



PDF
Thumbnail PDF

File

LIPIcs.FSCD.2024.23.pdf
  • Filesize: 0.96 MB
  • 24 pages

Document Identifiers

Author Details

Beniamino Accattoli
  • Inria & LIX, Ecole Polytechnique, UMR 7161, France
Adrienne Lancelot
  • Inria & LIX, Ecole Polytechnique, UMR 7161, France
  • Université Paris Cité, CNRS, IRIF, Paris, France

Cite As Get BibTex

Beniamino Accattoli and Adrienne Lancelot. Mirroring Call-By-Need, or Values Acting Silly. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 23:1-23:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.FSCD.2024.23

Abstract

Call-by-need evaluation for the λ-calculus can be seen as merging the best of call-by-name and call-by-value, namely the wise erasing behaviour of the former and the wise duplicating behaviour of the latter. To better understand how duplication and erasure can be combined, we design a degenerated calculus, dubbed call-by-silly, that is symmetric to call-by-need in that it merges the worst of call-by-name and call-by-value, namely silly duplications by-name and silly erasures by-value. 
We validate the design of the call-by-silly calculus via rewriting properties and multi types. In particular, we mirror the main theorem about call-by-need - that is, its operational equivalence with call-by-name - showing that call-by-silly and call-by-value induce the same contextual equivalence. This fact shows the blindness with respect to efficiency of call-by-value contextual equivalence. We also define a call-by-silly strategy and measure its length via tight multi types. Lastly, we prove that the call-by-silly strategy computes evaluation sequences of maximal length in the calculus.

Subject Classification

ACM Subject Classification
  • Theory of computation → Lambda calculus
Keywords
  • Lambda calculus
  • intersection types
  • call-by-value
  • call-by-need

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Beniamino Accattoli. An abstract factorization theorem for explicit substitutions. In Ashish Tiwari, editor, 23rd International Conference on Rewriting Techniques and Applications (RTA'12) , RTA 2012, May 28 - June 2, 2012, Nagoya, Japan, volume 15 of LIPIcs, pages 6-21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. URL: https://doi.org/10.4230/LIPIcs.RTA.2012.6.
  2. Beniamino Accattoli. Proof nets and the call-by-value λ-calculus. Theor. Comput. Sci., 606:2-24, 2015. URL: https://doi.org/10.1016/j.tcs.2015.08.006.
  3. Beniamino Accattoli. Proof nets and the linear substitution calculus. In Bernd Fischer and Tarmo Uustalu, editors, Theoretical Aspects of Computing - ICTAC 2018 - 15th International Colloquium, Stellenbosch, South Africa, October 16-19, 2018, Proceedings, volume 11187 of Lecture Notes in Computer Science, pages 37-61. Springer, 2018. URL: https://doi.org/10.1007/978-3-030-02508-3_3.
  4. Beniamino Accattoli. Exponentials as substitutions and the cost of cut elimination in linear logic. In Christel Baier and Dana Fisman, editors, LICS '22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, pages 49:1-49:15. ACM, 2022. URL: https://doi.org/10.1145/3531130.3532445.
  5. Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. Distilling abstract machines. In Johan Jeuring and Manuel M. T. Chakravarty, editors, Proceedings of the 19th ACM SIGPLAN international conference on Functional programming, Gothenburg, Sweden, September 1-3, 2014, pages 363-376. ACM, 2014. URL: https://doi.org/10.1145/2628136.2628154.
  6. Beniamino Accattoli and Bruno Barras. Environments and the complexity of abstract machines. In Proceedings of the 19th International Symposium on Principles and Practice of Declarative Programming (PPDP 2017), pages 4-16, 2017. URL: https://doi.org/10.1145/3131851.3131855.
  7. Beniamino Accattoli and Bruno Barras. The negligible and yet subtle cost of pattern matching. In Bor-Yuh Evan Chang, editor, Programming Languages and Systems - 15th Asian Symposium, APLAS 2017, Suzhou, China, November 27-29, 2017, Proceedings, volume 10695 of Lecture Notes in Computer Science, pages 426-447. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-71237-6_21.
  8. Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi. A nonstandard standardization theorem. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '14, San Diego, CA, USA, January 20-21, 2014, pages 659-670. ACM, 2014. URL: https://doi.org/10.1145/2535838.2535886.
  9. Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. Tight typings and split bounds, fully developed. J. Funct. Program., 30:e14, 2020. URL: https://doi.org/10.1017/S095679682000012X.
  10. Beniamino Accattoli and Giulio Guerrieri. Open call-by-value. In Atsushi Igarashi, editor, Programming Languages and Systems - 14th Asian Symposium, APLAS 2016, Hanoi, Vietnam, November 21-23, 2016, Proceedings, volume 10017 of Lecture Notes in Computer Science, pages 206-226, 2016. URL: https://doi.org/10.1007/978-3-319-47958-3_12.
  11. Beniamino Accattoli and Giulio Guerrieri. The theory of call-by-value solvability. Proc. ACM Program. Lang., 6(ICFP):855-885, 2022. URL: https://doi.org/10.1145/3547652.
  12. Beniamino Accattoli, Giulio Guerrieri, and Maico Leberle. Types by need. In Proceedings of the 28th European Symposium on Programming (ESOP 2019), pages 410-439, 2019. URL: https://doi.org/10.1007/978-3-030-17184-1_15.
  13. Beniamino Accattoli and Delia Kesner. The structural lambda-calculus. In Anuj Dawar and Helmut Veith, editors, Computer Science Logic, 24th International Workshop, CSL 2010, 19th Annual Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010. Proceedings, volume 6247 of Lecture Notes in Computer Science, pages 381-395. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-15205-4_30.
  14. Beniamino Accattoli and Adrienne Lancelot. Mirroring call-by-need, or values acting silly, 2024. URL: https://arxiv.org/abs/2402.12078.
  15. Beniamino Accattoli and Maico Leberle. Useful open call-by-need. In Florin Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer Science Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference), volume 216 of LIPIcs, pages 4:1-4:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.CSL.2022.4.
  16. Beniamino Accattoli and Luca Paolini. Call-by-value solvability, revisited. In Tom Schrijvers and Peter Thiemann, editors, Functional and Logic Programming - 11th International Symposium, FLOPS 2012, Kobe, Japan, May 23-25, 2012. Proceedings, volume 7294 of Lecture Notes in Computer Science, pages 4-16. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-29822-6_4.
  17. Zena M. Ariola, Paul Downen, Hugo Herbelin, Keiko Nakata, and Alexis Saurin. Classical call-by-need sequent calculi: The unity of semantic artifacts. In Tom Schrijvers and Peter Thiemann, editors, Functional and Logic Programming - 11th International Symposium, FLOPS 2012, Kobe, Japan, May 23-25, 2012. Proceedings, volume 7294 of Lecture Notes in Computer Science, pages 32-46. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-29822-6_6.
  18. Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda calculus. In Ron K. Cytron and Peter Lee, editors, Conference Record of POPL'95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Francisco, California, USA, January 23-25, 1995, pages 233-246. ACM Press, 1995. URL: https://doi.org/10.1145/199448.199507.
  19. Zena M. Ariola, Hugo Herbelin, and Alexis Saurin. Classical call-by-need and duality. In C.-H. Luke Ong, editor, Typed Lambda Calculi and Applications - 10th International Conference, TLCA 2011, Novi Sad, Serbia, June 1-3, 2011. Proceedings, volume 6690 of Lecture Notes in Computer Science, pages 27-44. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-21691-6_6.
  20. Pablo Arrighi and Gilles Dowek. Lineal: A linear-algebraic lambda-calculus. Log. Methods Comput. Sci., 13(1), 2017. URL: https://doi.org/10.23638/LMCS-13(1:8)2017.
  21. Thibaut Balabonski, Pablo Barenbaum, Eduardo Bonelli, and Delia Kesner. Foundations of strong call by need. PACMPL, 1(ICFP):20:1-20:29, 2017. URL: https://doi.org/10.1145/3110264.
  22. Thibaut Balabonski, Antoine Lanco, and Guillaume Melquiond. A strong call-by-need calculus. In Naoki Kobayashi, editor, 6th International Conference on Formal Structures for Computation and Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Conference), volume 195 of LIPIcs, pages 9:1-9:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.FSCD.2021.9.
  23. Pablo Barenbaum, Eduardo Bonelli, and Kareem Mohamed. Pattern matching and fixed points: Resource types and strong call-by-need: Extended abstract. In David Sabel and Peter Thiemann, editors, Proceedings of the 20th International Symposium on Principles and Practice of Declarative Programming, PPDP 2018, Frankfurt am Main, Germany, September 03-05, 2018, pages 6:1-6:12. ACM, 2018. URL: https://doi.org/10.1145/3236950.3236972.
  24. Alexis Bernadet and Stéphane Lengrand. Complexity of strongly normalising λ-terms via non-idempotent intersection types. In FOSSACS 2011, pages 88-107, 2011. URL: https://doi.org/10.1007/978-3-642-19805-2_7.
  25. Dariusz Biernacki, Sergueï Lenglet, and Piotr Polesiuk. A complete normal-form bisimilarity for state. In Mikolaj Bojanczyk and Alex Simpson, editors, Foundations of Software Science and Computation Structures - 22nd International Conference, FOSSACS 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, volume 11425 of Lecture Notes in Computer Science, pages 98-114. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-17127-8_6.
  26. Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. Solvability = typability + inhabitation. Log. Methods Comput. Sci., 17(1), 2021. URL: https://lmcs.episciences.org/7141.
  27. Alberto Carraro and Giulio Guerrieri. A semantical and operational account of call-by-value solvability. In Anca Muscholl, editor, Foundations of Software Science and Computation Structures - 17th International Conference, FOSSACS 2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8412 of Lecture Notes in Computer Science, pages 103-118. Springer, 2014. URL: https://doi.org/10.1007/978-3-642-54830-7_7.
  28. Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Martin Odersky and Philip Wadler, editors, Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP '00), Montreal, Canada, September 18-21, 2000, pages 233-243. ACM, 2000. URL: https://doi.org/10.1145/351240.351262.
  29. Ugo Dal Lago and Simone Martini. The weak lambda calculus as a reasonable machine. Theor. Comput. Sci., 398(1-3):32-50, 2008. URL: https://doi.org/10.1016/j.tcs.2008.01.044.
  30. Daniel de Carvalho. Sémantiques de la logique linéaire et temps de calcul. Thèse de doctorat, Université Aix-Marseille II, 2007. Google Scholar
  31. Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection types. Mathematical Structures in Computer Science, 28(7):1169-1203, 2018. URL: https://doi.org/10.1017/S0960129516000396.
  32. Thomas Ehrhard. Collapsing non-idempotent intersection types. In Patrick Cégielski and Arnaud Durand, editors, Computer Science Logic (CSL'12) - 26th International Workshop/21st Annual Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France, volume 16 of LIPIcs, pages 259-273. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. URL: https://doi.org/10.4230/LIPIcs.CSL.2012.259.
  33. Thomas Ehrhard and Giulio Guerrieri. The bang calculus: an untyped lambda-calculus generalizing call-by-name and call-by-value. In James Cheney and Germán Vidal, editors, Proceedings of the 18th International Symposium on Principles and Practice of Declarative Programming, Edinburgh, United Kingdom, September 5-7, 2016, pages 174-187. ACM, 2016. URL: https://doi.org/10.1145/2967973.2968608.
  34. Claudia Faggian and Simona Ronchi Della Rocca. Lambda calculus and probabilistic computation. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1-13. IEEE, 2019. URL: https://doi.org/10.1109/LICS.2019.8785699.
  35. Philippa Gardner. Discovering needed reductions using type theory. In Masami Hagiya and John C. Mitchell, editors, Theoretical Aspects of Computer Software, International Conference TACS '94, Sendai, Japan, April 19-22, 1994, Proceedings, volume 789 of Lecture Notes in Computer Science, pages 555-574. Springer, 1994. URL: https://doi.org/10.1007/3-540-57887-0_115.
  36. J.R. Hindley. The Church-Rosser Property and a Result in Combinatory Logic. PhD thesis, University of Newcastle-upon-Tyne, 1964. Google Scholar
  37. Axel Kerinec, Giulio Manzonetto, and Simona Ronchi Della Rocca. Call-by-value, again! In Naoki Kobayashi, editor, 6th International Conference on Formal Structures for Computation and Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Conference), volume 195 of LIPIcs, pages 7:1-7:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.FSCD.2021.7.
  38. Delia Kesner. Reasoning about call-by-need by means of types. In Bart Jacobs and Christof Löding, editors, Foundations of Software Science and Computation Structures - 19th International Conference, FOSSACS 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9634 of Lecture Notes in Computer Science, pages 424-441. Springer, 2016. URL: https://doi.org/10.1007/978-3-662-49630-5_25.
  39. Delia Kesner and Shane Ó Conchúir. Milner’s lambda calculus with partial substitutions. Technical report, Paris 7 University, 2008. URL: http://www.pps.univ-paris-diderot.fr/~kesner/papers/shortpartial.pdf.
  40. Delia Kesner, Loïc Peyrot, and Daniel Ventura. The spirit of node replication. In Stefan Kiefer and Christine Tasson, editors, Foundations of Software Science and Computation Structures - 24th International Conference, FOSSACS 2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, volume 12650 of Lecture Notes in Computer Science, pages 344-364. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-71995-1_18.
  41. Delia Kesner, Alejandro Ríos, and Andrés Viso. Call-by-need, neededness and all that. In Christel Baier and Ugo Dal Lago, editors, Foundations of Software Science and Computation Structures - 21st International Conference, FOSSACS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, volume 10803 of Lecture Notes in Computer Science, pages 241-257. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-89366-2_13.
  42. Delia Kesner and Daniel Ventura. Quantitative types for the linear substitution calculus. In Josep Díaz, Ivan Lanese, and Davide Sangiorgi, editors, Theoretical Computer Science - 8th IFIP TC 1/WG 2.2 International Conference, TCS 2014, Rome, Italy, September 1-3, 2014. Proceedings, volume 8705 of Lecture Notes in Computer Science, pages 296-310. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-44602-7_23.
  43. A. J. Kfoury. A linearization of the lambda-calculus and consequences. J. Log. Comput., 10(3):411-436, 2000. URL: https://doi.org/10.1093/LOGCOM/10.3.411.
  44. Olivier Laurent. Étude de la polarisation en logique. Thèse de doctorat, Université Aix-Marseille II, March 2002. Google Scholar
  45. Paul Blain Levy. Call-by-push-value: Decomposing call-by-value and call-by-name. High. Order Symb. Comput., 19(4):377-414, 2006. URL: https://doi.org/10.1007/s10990-006-0480-6.
  46. Giulio Manzonetto, Michele Pagani, and Simona Ronchi Della Rocca. New semantical insights into call-by-value λ-calculus. Fundam. Informaticae, 170(1-3):241-265, 2019. URL: https://doi.org/10.3233/FI-2019-1862.
  47. John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-name, call-by-value, call-by-need and the linear lambda calculus. Theor. Comput. Sci., 228(1-2):175-210, 1999. URL: https://doi.org/10.1016/S0304-3975(98)00358-2.
  48. Robin Milner. Local bigraphs and confluence: Two conjectures: (extended abstract). In Roberto M. Amadio and Iain Phillips, editors, Proceedings of the 13th International Workshop on Expressiveness in Concurrency, EXPRESS 2006, Bonn, Germany, August 26, 2006, volume 175 of Electronic Notes in Theoretical Computer Science, pages 65-73. Elsevier, 2006. URL: https://doi.org/10.1016/j.entcs.2006.07.035.
  49. Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci., 1(2):125-159, 1975. URL: https://doi.org/10.1016/0304-3975(75)90017-1.
  50. György E. Révész. A list-oriented extension of the lambda-calculus satisfying the Church-Rosser theorem. Theor. Comput. Sci., 93(1):75-89, 1992. URL: https://doi.org/10.1016/0304-3975(92)90212-X.
  51. Alexis Saurin. On the relations between the syntactic theories of lambda-mu-calculi. In Michael Kaminski and Simone Martini, editors, Computer Science Logic, 22nd International Workshop, CSL 2008, 17th Annual Conference of the EACSL, Bertinoro, Italy, September 16-19, 2008. Proceedings, volume 5213 of Lecture Notes in Computer Science, pages 154-168. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-87531-4_13.
  52. Kristian Støvring and Søren B. Lassen. A complete, co-inductive syntactic theory of sequential control and state. In Jens Palsberg, editor, Semantics and Algebraic Specification, Essays Dedicated to Peter D. Mosses on the Occasion of His 60th Birthday, volume 5700 of Lecture Notes in Computer Science, pages 329-375. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-04164-8_17.
  53. Christopher P. Wadsworth. Semantics and pragmatics of the lambda-calculus. PhD Thesis, Oxford, 1971. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail