Engineering Edge Orientation Algorithms

Engineering Edge Orientation Algorithms

Authors Henrik Reinstädtler , Christian Schulz , Bora Uçar



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.97.pdf
  • Filesize: 1.09 MB
  • 18 pages

Document Identifiers

Author Details

Henrik Reinstädtler
  • Heidelberg University, Germany
Christian Schulz
  • Heidelberg University, Germany
Bora Uçar
  • CNRS and LIP, ENS de Lyon, France
  • UMR5668 (CNRS, ENS de Lyon, Inria, UCBL1), France

Cite As Get BibTex

Henrik Reinstädtler, Christian Schulz, and Bora Uçar. Engineering Edge Orientation Algorithms. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 97:1-97:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ESA.2024.97

Abstract

Given an undirected graph G, the edge orientation problem asks for assigning a direction to each edge to convert G into a directed graph. The aim is to minimize the maximum out-degree of a vertex in the resulting directed graph. This problem, which is solvable in polynomial time, arises in many applications. An ongoing challenge in edge orientation algorithms is their scalability, particularly in handling large-scale networks with millions or billions of edges efficiently. We propose a novel algorithmic framework based on finding and manipulating simple paths to face this challenge. Our framework is based on an existing algorithm and allows many algorithmic choices. By carefully exploring these choices and engineering the underlying algorithms, we obtain an implementation which is more efficient and scalable than the current state-of-the-art. Our experiments demonstrate significant performance improvements compared to state-of-the-art solvers. On average our algorithm is 6.59 times faster when compared to the state-of-the-art.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • edge orientation
  • pseudoarboricity
  • graph algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Oswin Aichholzer, Franz Aurenhammer, and Günter Rote. Optimal graph orientation with storage applications. Universität Graz/Technische Universität Graz. SFB F003-Optimierung und Kontrolle, 1995. Google Scholar
  2. Yuichi Asahiro, Eiji Miyano, Hirotaka Ono, and Kouhei Zenmyo. Graph orientation algorithms to minimize the maximum outdegree. Int. J. Found. Comput. Sci., 18(2):197-215, 2007. URL: https://doi.org/10.1142/S0129054107004644.
  3. David A. Bader, Andrea Kappes, Henning Meyerhenke, Peter Sanders, Christian Schulz, and Dorothea Wagner. Benchmarking for graph clustering and partitioning. In Reda Alhajj and Jon G. Rokne, editors, Encyclopedia of Social Network Analysis and Mining, 2nd Edition, pages 73-82. Springer, 2018. URL: https://doi.org/10.1007/978-1-4939-7131-2_23.
  4. Scott Beamer, Krste Asanovic, and David A. Patterson. The GAP benchmark suite. CoRR, abs/1508.03619, 2015. URL: https://doi.org/10.48550/arXiv.1508.03619.
  5. Dennis A. Benson, Mark S. Boguski, David J. Lipman, and James Ostell. Genbank. Nucleic Acids Research, 24(1):1-5, 1996. URL: https://doi.org/10.1093/nar/24.1.1.
  6. Markus Blumenstock. Fast algorithms for pseudoarboricity. In Michael T. Goodrich and Michael Mitzenmacher, editors, Proceedings of the Eighteenth Workshop on Algorithm Engineering and Experiments, ALENEX 2016, Arlington, Virginia, USA, January 10, 2016, pages 113-126. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974317.10.
  7. Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label propagation: A multiresolution coordinate-free ordering for compressing social networks. In Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and Ravi Kumar, editors, Proc. of the 20th international conference on World Wide Web, pages 587-596. ACM Press, 2011. URL: https://doi.org/10.1145/1963405.1963488.
  8. Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression techniques. In Proc. of the 13th Int. World Wide Web Conference (WWW 2004), pages 595-601, Manhattan, USA, 2004. ACM Press. URL: https://doi.org/10.1145/988672.988752.
  9. Léopold Cambier, Chao Chen, Erik G. Boman, Sivasankaran Rajamanickam, Raymond S. Tuminaro, and Eric Darve. An algebraic sparsified nested dissection algorithm using low-rank approximations. SIAM Journal on Matrix Analysis and Applications, 41(2):715-746, 2020. URL: https://doi.org/10.1137/19M123806X.
  10. Moses Charikar. Greedy approximation algorithms for finding dense components in a graph. In Klaus Jansen and Samir Khuller, editors, Approximation Algorithms for Combinatorial Optimization, Third International Workshop, APPROX 2000, Saarbrücken, Germany, September 5-8, 2000, Proceedings, volume 1913 of Lecture Notes in Computer Science, pages 84-95. Springer, 2000. URL: https://doi.org/10.1007/3-540-44436-X_10.
  11. Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traffic data repository at the WIDE project. In Proceedings of the Freenix Track: 2000 USENIX Annual Technical Conference, June 18-23, 2000, San Diego, CA, USA, pages 263-270. USENIX, 2000. URL: http://www.usenix.org/publications/library/proceedings/usenix2000/freenix/cho.html.
  12. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, 3rd Edition. MIT Press, Cambridge, MA, 3rd edition, 2009. URL: http://mitpress.mit.edu/books/introduction-algorithms.
  13. Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection. ACM Trans. Math. Softw., 38(1), December 2011. URL: https://doi.org/10.1145/2049662.2049663.
  14. Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance profiles. Mathematical Programming, 91(2):201-213, 2002. URL: https://doi.org/10.1007/s101070100263.
  15. Iain S. Duff. On algorithms for obtaining a maximum transversal. ACM Trans. Math. Softw., 7(3):315-330, 1981. URL: https://doi.org/10.1145/355958.355963.
  16. Iain S. Duff, Kamer Kaya, and Bora Uçar. Design, implementation, and analysis of maximum transversal algorithms. ACM Transactions on Mathematical Software, 38:13:1-13:31, 2011. URL: https://doi.org/10.1145/2049673.2049677.
  17. Shimon Even and Robert Endre Tarjan. Network flow and testing graph connectivity. SIAM J. Comput., 4(4):507-518, 1975. URL: https://doi.org/10.1137/0204043.
  18. Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In David S. Johnson, Ronald Fagin, Michael L. Fredman, David Harel, Richard M. Karp, Nancy A. Lynch, Christos H. Papadimitriou, Ronald L. Rivest, Walter L. Ruzzo, and Joel I. Seiferas, editors, Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston, Massachusetts, USA, pages 448-456. ACM, 1983. URL: https://doi.org/10.1145/800061.808776.
  19. George F. Georgakopoulos and Kostas Politopoulos. MAX-DENSITY revisited: a generalization and a more efficient algorithm. Comput. J., 50(3):348-356, 2007. URL: https://doi.org/10.1093/comjnl/bxl082.
  20. Andrew V Goldberg. Finding a maximum density subgraph, 1984. URL: https://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/CSD-84-171.pdf.
  21. Andrew V Goldberg and Robert E Tarjan. A new approach to the maximum-flow problem. Journal of the ACM (JACM), 35(4):921-940, 1988. URL: https://doi.org/10.1145/48014.61051.
  22. John E. Hopcroft and Richard M. Karp. An n^5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing, 2(4):225-231, 1973. URL: https://doi.org/10.1137/0202019.
  23. Konstantinos G. Kakoulis and Ioannis G. Tollis. On the multiple label placement problem. In Proceedings of the 10th Canadian Conference on Computational Geometry, McGill University, Montréal, Québec, Canada, August 10-12, 1998, 1998. URL: http://cgm.cs.mcgill.ca/cccg98/proceedings/cccg98-kakoulis-multiple.ps.gz.
  24. Łukasz Kowalik. Approximation scheme for lowest outdegree orientation and graph density measures. In Tetsuo Asano, editor, Algorithms and Computation, 17th International Symposium, ISAAC 2006, Kolkata, India, December 18-20, 2006, Proceedings, volume 4288 of Lecture Notes in Computer Science, pages 557-566. Springer, 2006. URL: https://doi.org/10.1007/11940128_56.
  25. J. Leskovec. Stanford Network Analysis Package (SNAP). http://snap.stanford.edu/index.html, June 2014.
  26. Jean-Claude Picard and Maurice Queyranne. A network flow solution to some nonlinear 0-1 programming problems, with applications to graph theory. Networks, 12(2):141-159, 1982. URL: https://doi.org/10.1002/net.3230120206.
  27. Alex Pothen and Chin-Ju Fan. Computing the block triangular form of a sparse matrix. ACM Transactions on Mathematical Software, 16(4):303-324, December 1990. URL: https://doi.org/10.1145/98267.98287.
  28. Henrik Reinstädtler, Christian Schulz, and Bora Uçar. HeiOrient. Software, DFG-SCHU 2567/3-1, (visited on 2024-08-07). URL: https://github.com/HeiOrient/HeiOrient
    Software Heritage Logo archived version
    full metadata available at: https://doi.org/10.4230/artifacts.22501
  29. Henrik Reinstädtler, Christian Schulz, and Bora Uçar. Engineering edge orientation algorithms, 2024. URL: https://doi.org/10.48550/arXiv.2404.13997.
  30. Justin Sybrandt, Ilya Tyagin, Michael Shtutman, and Ilya Safro. AGATHA: automatic graph mining and transformer based hypothesis generation approach. In Mathieu d'Aquin, Stefan Dietze, Claudia Hauff, Edward Curry, and Philippe Cudré-Mauroux, editors, CIKM '20: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland, October 19-23, 2020, pages 2757-2764. ACM, 2020. URL: https://doi.org/10.1145/3340531.3412684.
  31. Venkat Venkateswaran. Minimizing maximum indegree. Discret. Appl. Math., 143(1-3):374-378, 2004. URL: https://doi.org/10.1016/j.dam.2003.07.007.
  32. Walter Whiteley. The union of matroids and the rigidity of frameworks. SIAM Journal on Discrete Mathematics, 1(2):237-255, 1988. URL: https://doi.org/10.1137/0401025.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail