A Faster Algorithm for the Fréchet Distance in 1D for the Imbalanced Case

A Faster Algorithm for the Fréchet Distance in 1D for the Imbalanced Case

Authors Lotte Blank , Anne Driemel



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.28.pdf
  • Filesize: 1.03 MB
  • 15 pages

Document Identifiers

Author Details

Lotte Blank
  • University of Bonn, Germany
Anne Driemel
  • University of Bonn, Germany

Cite As Get BibTex

Lotte Blank and Anne Driemel. A Faster Algorithm for the Fréchet Distance in 1D for the Imbalanced Case. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 28:1-28:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ESA.2024.28

Abstract

The fine-grained complexity of computing the {Fréchet distance } has been a topic of much recent work, starting with the quadratic SETH-based conditional lower bound by Bringmann from 2014. Subsequent work established largely the same complexity lower bounds for the {Fréchet distance } in 1D. However, the imbalanced case, which was shown by Bringmann to be tight in dimensions d ≥ 2, was still left open. Filling in this gap, we show that a faster algorithm for the {Fréchet distance } in the imbalanced case is possible: Given two 1-dimensional curves of complexity n and n^{α} for some α ∈ (0,1), we can compute their {Fréchet distance } in O(n^{2α} log² n + n log n) time. This rules out a conditional lower bound of the form O((nm)^{1-ε}) that Bringmann showed for d ≥ 2 and any ε > 0 in turn showing a strict separation with the setting d = 1. At the heart of our approach lies a data structure that stores a 1-dimensional curve P of complexity n, and supports queries with a curve Q of complexity m for the continuous {Fréchet distance } between P and Q. The data structure has size in 𝒪(nlog n) and uses query time in 𝒪(m² log² n). Our proof uses a key lemma that is based on the concept of visiting orders and may be of independent interest. We demonstrate this by substantially simplifying the correctness proof of a clustering algorithm by Driemel, Krivošija and Sohler from 2015.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • {Fréchet distance}
  • distance oracle
  • data structures
  • time series

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pankaj K. Agarwal. Range searching. In Jacob E. Goodman and Joseph O'Rourke, editors, Handbook of Discrete and Computational Geometry, Second Edition, pages 809-837. Chapman and Hall/CRC, 2004. URL: https://doi.org/10.1201/9781420035315.CH36.
  2. Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing the discrete Fréchet distance in subquadratic time. SIAM Journal on Computing, 43(2):429-449, 2014. URL: https://doi.org/10.1137/130920526.
  3. Helmut Alt. The computational geometry of comparing shapes. Efficient Algorithms: Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday, pages 235-248, 2009. Google Scholar
  4. Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl., 5:75-91, 1995. URL: https://doi.org/10.1142/S0218195995000064.
  5. Boris Aronov, Tsuri Farhana, Matthew J. Katz, and Indu Ramesh. Discrete Fréchet distance oracles, 2024. URL: https://doi.org/10.48550/arXiv.2404.04065.
  6. Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola Wenk. Fréchet distance for curves, revisited. In Algorithms-ESA 2006: 14th Annual European Symposium, Zurich, Switzerland, September 11-13, 2006. Proceedings 14, pages 52-63. Springer, 2006. Google Scholar
  7. Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquadratic algorithms unless seth fails. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 661-670. IEEE, 2014. Google Scholar
  8. Karl Bringmann, Anne Driemel, André Nusser, and Ioannis Psarros. Tight bounds for approximate near neighbor searching for time series under the Fréchet distance. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 517-550. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.25.
  9. Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance. Journal of Computational Geometry, 7(2):46-76, 2016. Google Scholar
  10. Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four soviets walk the dog: Improved bounds for computing the Fréchet distance. Discrete Comput. Geom., 58(1):180-216, July 2017. URL: https://doi.org/10.1007/s00454-017-9878-7.
  11. Kevin Buchin, Jinhee Chun, A Markovic, W Meulemans, M Löffler, Yoshio Okamoto, and Taichi Shiitada. Folding free-space diagrams: computing the Fréchet distance between 1-dimensional curves. In 33rd International Symposium on Computational Geometry (SoCG 2017), pages 641-645. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. Google Scholar
  12. Kevin Buchin, Tim Ophelders, and Bettina Speckmann. SETH says: Weak Fréchet distance is faster, but only if it is continuous and in one dimension. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2887-2901. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.179.
  13. Maike Buchin, Ivor van der Hoog, Tim Ophelders, Lena Schlipf, Rodrigo I. Silveira, and Frank Staals. Efficient Fréchet distance queries for segments. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 29:1-29:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.ESA.2022.29.
  14. Timothy M. Chan and Zahed Rahmati. An improved approximation algorithm for the discrete Fréchet distance. Inf. Process. Lett., 138:72-74, 2018. URL: https://doi.org/10.1016/J.IPL.2018.06.011.
  15. Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: I. A data structuring technique. Algorithmica, 1(2):133-162, 1986. URL: https://doi.org/10.1007/BF01840440.
  16. Siu-Wing Cheng and Haoqiang Huang. Solving Fréchet distance problems by algebraic geometric methods. In David P. Woodruff, editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10, 2024, pages 4502-4513. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977912.158.
  17. Mark de Berg, Ali D. Mehrabi, and Tim Ophelders. Data structures for Fréchet queries in trajectory data. In Joachim Gudmundsson and Michiel H. M. Smid, editors, Proceedings of the 29th Canadian Conference on Computational Geometry, CCCG 2017, July 26-28, 2017, Carleton University, Ottawa, Ontario, Canada, pages 214-219, 2017. Google Scholar
  18. Anne Driemel and Sariel Har-Peled. Jaywalking your dog: Computing the Fréchet distance with shortcuts. SIAM J. Comput., 42(5):1830-1866, 2013. URL: https://doi.org/10.1137/120865112.
  19. Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance for realistic curves in near linear time. Discret. Comput. Geom., 48(1):94-127, 2012. URL: https://doi.org/10.1007/S00454-012-9402-Z.
  20. Anne Driemel, Amer Krivosija, and Christian Sohler. Clustering time series under the Fréchet distance. CoRR, abs/1512.04349, 2015. URL: https://arxiv.org/abs/1512.04349.
  21. Anne Driemel, Amer Krivosija, and Christian Sohler. Clustering time series under the Fréchet distance. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 766-785. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.CH55.
  22. Anne Driemel, Ioannis Psarros, and Melanie Schmidt. Sublinear data structures for short Fréchet queries. arXiv preprint arXiv:1907.04420, 2019. Google Scholar
  23. Anne Driemel, Ivor van der Hoog, and Eva Rotenberg. On the discrete Fréchet distance in a graph. In Xavier Goaoc and Michael Kerber, editors, 38th International Symposium on Computational Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages 36:1-36:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.SOCG.2022.36.
  24. Arnold Filtser and Omrit Filtser. Static and streaming data structures for Fréchet distance queries. ACM Trans. Algorithms, 19(4):39:1-39:36, 2023. URL: https://doi.org/10.1145/3610227.
  25. Greg N. Frederickson and Donald B. Johnson. Generalized selection and ranking: Sorted matrices. SIAM J. Comput., 13(1):14-30, 1984. URL: https://doi.org/10.1137/0213002.
  26. Anka Gajentaan and Mark H Overmars. On a class of o (n2) problems in computational geometry. Computational geometry, 5(3):165-185, 1995. Google Scholar
  27. Joachim Gudmundsson, Majid Mirzanezhad, Ali Mohades, and Carola Wenk. Fast Fréchet distance between curves with long edges. Int. J. Comput. Geom. Appl., 29(2):161-187, 2019. URL: https://doi.org/10.1142/S0218195919500043.
  28. Ivor van der Hoog, Eva Rotenberg, and Sampson Wong. Approximate discrete Fréchet distance: simplified, extended and structured. CoRR, abs/2212.07124, 2022. URL: https://doi.org/10.48550/arXiv.2212.07124.
  29. Thijs van der Horst and Tim Ophelders. Faster Fréchet distance approximation through truncated smoothing. CoRR, abs/2401.14815, 2024. URL: https://doi.org/10.48550/arXiv.2401.14815.
  30. Thijs van der Horst, Marc J. van Kreveld, Tim Ophelders, and Bettina Speckmann. A subquadratic n^ε-approximation for the continuous Fréchet distance. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 1759-1776. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH67.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail