Graph Spanners for Group Steiner Distances

Graph Spanners for Group Steiner Distances

Authors Davide Bilò , Luciano Gualà , Stefano Leucci , Alessandro Straziota



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.25.pdf
  • Filesize: 1.09 MB
  • 17 pages

Document Identifiers

Author Details

Davide Bilò
  • Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, Italy
Luciano Gualà
  • Department of Enterprise Engineering, University of Rome "Tor Vergata", Italy
Stefano Leucci
  • Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, Italy
Alessandro Straziota
  • Department of Enterprise Engineering, University of Rome "Tor Vergata", Italy

Cite As Get BibTex

Davide Bilò, Luciano Gualà, Stefano Leucci, and Alessandro Straziota. Graph Spanners for Group Steiner Distances. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ESA.2024.25

Abstract

A spanner is a sparse subgraph of a given graph G which preserves distances, measured w.r.t. some distance metric, up to a multiplicative stretch factor. This paper addresses the problem of constructing graph spanners w.r.t. the group Steiner metric, which generalizes the recently introduced beer distance metric. In such a metric we are given a collection of groups of required vertices, and we measure the distance between two vertices as the length of the shortest path between them that traverses at least one required vertex from each group. 
We discuss the relation between group Steiner spanners and classic spanners and we show that they exhibit strong ties with sourcewise spanners w.r.t. the shortest path metric. Nevertheless, group Steiner spanners capture several interesting scenarios that are not encompassed by existing spanners. This happens, e.g., for the singleton case, in which each group consists of a single required vertex, thus modeling the setting in which routes need to traverse certain points of interests (in any order).
We provide several constructions of group Steiner spanners for both the all-pairs and single-source case, which exhibit various size-stretch trade-offs. Notably, we provide spanners with almost-optimal trade-offs for the singleton case. Moreover, some of our spanners also yield novel trade-offs for classical sourcewise spanners.
Finally, we also investigate the query times that can be achieved when our spanners are turned into group Steiner distance oracles with the same size, stretch, and building time.

Subject Classification

ACM Subject Classification
  • Theory of computation → Sparsification and spanners
  • Mathematics of computing → Graph algorithms
Keywords
  • Network sparsification
  • Graph spanners
  • Group Steiner tree
  • Distance oracles

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Abu Reyan Ahmed, Greg Bodwin, Keaton Hamm, Stephen G. Kobourov, and Richard Spence. On additive spanners in weighted graphs with local error. In Lukasz Kowalik, Michal Pilipczuk, and Pawel Rzazewski, editors, Graph-Theoretic Concepts in Computer Science - 47th International Workshop, WG 2021, Warsaw, Poland, June 23-25, 2021, Revised Selected Papers, volume 12911 of Lecture Notes in Computer Science, pages 361-373. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-86838-3_28.
  2. Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad Javad Latifi Jebelli, Stephen Kobourov, and Richard Spence. Graph spanners: A tutorial review. Computer Science Review, 37:100253, 2020. URL: https://doi.org/10.1016/j.cosrev.2020.100253.
  3. Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse spanners of weighted graphs. Discret. Comput. Geom., 9:81-100, 1993. URL: https://doi.org/10.1007/BF02189308.
  4. Saeed Akhoondian Amiri, Klaus-Tycho Foerster, and Stefan Schmid. Walking through waypoints. Algorithmica, 82(7):1784-1812, 2020. URL: https://doi.org/10.1007/S00453-020-00672-Z.
  5. Joyce Bacic, Saeed Mehrabi, and Michiel Smid. Shortest beer path queries in outerplanar graphs. In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs, pages 62:1-62:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.ISAAC.2021.62.
  6. Joyce Bacic, Saeed Mehrabi, and Michiel Smid. Shortest beer path queries in outerplanar graphs. Algorithmica, 85(6):1679-1705, 2023. URL: https://doi.org/10.1007/S00453-022-01045-4.
  7. Michael A. Bender and Martin Farach-Colton. The level ancestor problem simplified. In Sergio Rajsbaum, editor, LATIN 2002: Theoretical Informatics, 5th Latin American Symposium, Cancun, Mexico, April 3-6, 2002, Proceedings, volume 2286 of Lecture Notes in Computer Science, pages 508-515. Springer, 2002. URL: https://doi.org/10.1007/3-540-45995-2_44.
  8. Greg Bodwin and Virginia Vassilevska Williams. Better distance preservers and additive spanners. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 855-872. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.CH61.
  9. Keren Censor-Hillel, Telikepalli Kavitha, Ami Paz, and Amir Yehudayoff. Distributed construction of purely additive spanners. In Cyril Gavoille and David Ilcinkas, editors, Distributed Computing - 30th International Symposium, DISC 2016, Paris, France, September 27-29, 2016. Proceedings, volume 9888 of Lecture Notes in Computer Science, pages 129-142. Springer, 2016. URL: https://doi.org/10.1007/978-3-662-53426-7_10.
  10. Gary Chartrand, Ortrud R. Oellermann, Song Lin Tian, and Hung Bin Zou. Steiner distance in graphs. Časopis pro pěstování matematiky, 114(4):399-410, 1989. Google Scholar
  11. Shiri Chechik. Approximate distance oracles with constant query time. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 654-663. ACM, 2014. URL: https://doi.org/10.1145/2591796.2591801.
  12. Shiri Chechik. Approximate distance oracles with improved bounds. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 1-10. ACM, 2015. URL: https://doi.org/10.1145/2746539.2746562.
  13. Don Coppersmith and Michael Elkin. Sparse sourcewise and pairwise distance preservers. SIAM J. Discret. Math., 20(2):463-501, 2006. URL: https://doi.org/10.1137/050630696.
  14. Marek Cygan, Fabrizio Grandoni, and Telikepalli Kavitha. On pairwise spanners. In Natacha Portier and Thomas Wilke, editors, 30th International Symposium on Theoretical Aspects of Computer Science, STACS 2013, February 27 - March 2, 2013, Kiel, Germany, volume 20 of LIPIcs, pages 209-220. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013. URL: https://doi.org/10.4230/LIPICS.STACS.2013.209.
  15. Rathish Das, Meng He, Eitan Kondratovsky, J. Ian Munro, Anurag Murty Naredla, and Kaiyu Wu. Shortest beer path queries in interval graphs. In Sang Won Bae and Heejin Park, editors, 33rd International Symposium on Algorithms and Computation, ISAAC 2022, December 19-21, 2022, Seoul, Korea, volume 248 of LIPIcs, pages 59:1-59:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.ISAAC.2022.59.
  16. Khaled M. Elbassioni, Aleksei V. Fishkin, Nabil H. Mustafa, and René Sitters. Approximation algorithms for euclidean group TSP. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung, editors, Automata, Languages and Programming, 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, volume 3580 of Lecture Notes in Computer Science, pages 1115-1126. Springer, 2005. URL: https://doi.org/10.1007/11523468_90.
  17. Michael Elkin, Arnold Filtser, and Ofer Neiman. Terminal embeddings. Theor. Comput. Sci., 697:1-36, 2017. URL: https://doi.org/10.1016/J.TCS.2017.06.021.
  18. Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Improved weighted additive spanners. Distributed Comput., 36(3):385-394, 2023. URL: https://doi.org/10.1007/S00446-022-00433-X.
  19. Paul Erdös. On some extremal problems in graph theory. Israel Journal of Mathematics, 3:113-116, 1965. Google Scholar
  20. Joachim Gudmundsson and Yuan Sha. Shortest beer path queries in digraphs with bounded treewidth. In Satoru Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and Computation, ISAAC 2023, December 3-6, 2023, Kyoto, Japan, volume 283 of LIPIcs, pages 35:1-35:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ISAAC.2023.35.
  21. Tesshu Hanaka, Hirotaka Ono, Kunihiko Sadakane, and Kosuke Sugiyama. Shortest beer path queries based on graph decomposition. In Satoru Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and Computation, ISAAC 2023, December 3-6, 2023, Kyoto, Japan, volume 283 of LIPIcs, pages 37:1-37:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ISAAC.2023.37.
  22. Marek Karpinski, Michael Lampis, and Richard Schmied. New inapproximability bounds for TSP. J. Comput. Syst. Sci., 81(8):1665-1677, 2015. URL: https://doi.org/10.1016/J.JCSS.2015.06.003.
  23. Telikepalli Kavitha. New pairwise spanners. Theory Comput. Syst., 61(4):1011-1036, 2017. URL: https://doi.org/10.1007/S00224-016-9736-7.
  24. Hung Le and Shay Solomon. Near-optimal spanners for general graphs in (nearly) linear time. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 3332-3361. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.132.
  25. Yaping Mao. Steiner distance in graphs-a survey, 2017. URL: https://arxiv.org/abs/1708.05779.
  26. Petrică C. Pop, Ovidiu Cosma, Cosmin Sabo, and Corina Pop Sitar. A comprehensive survey on the generalized traveling salesman problem. European Journal of Operational Research, 314(3):819-835, 2024. URL: https://doi.org/10.1016/j.ejor.2023.07.022.
  27. András Sebö and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-tsp, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Comb., 34(5):597-629, 2014. URL: https://doi.org/10.1007/S00493-014-2960-3.
  28. Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1-24, January 2005. URL: https://doi.org/10.1145/1044731.1044732.
  29. Jacques Tits. Sur la trialité et certains groupes qui s’en déduisent. Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 2:14-60, 1959. Google Scholar
  30. Vera Traub, Jens Vygen, and Rico Zenklusen. Reducing path TSP to TSP. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 14-27. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384256.
  31. Vijay V. Vazirani. Approximation algorithms. Springer, 2001. URL: http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7.
  32. R. Wenger. Extremal graphs with no c4,s, or c10,s. J. Comb. Theory Ser. B, 52(1):113-116, May 1991. URL: https://doi.org/10.1016/0095-8956(91)90097-4.
  33. Rico Zenklusen. A 1.5-approximation for path TSP. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1539-1549. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.93.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail