Reconstructing General Matching Graphs

Reconstructing General Matching Graphs

Authors Amihood Amir, Michael Itzhaki



PDF
Thumbnail PDF

File

LIPIcs.CPM.2024.2.pdf
  • Filesize: 0.67 MB
  • 15 pages

Document Identifiers

Author Details

Amihood Amir
  • Department of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
  • Georgia Tech, College of Computing, Atlanta, GA, USA
Michael Itzhaki
  • Department of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel

Cite As Get BibTex

Amihood Amir and Michael Itzhaki. Reconstructing General Matching Graphs. In 35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 296, pp. 2:1-2:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.CPM.2024.2

Abstract

The classical pattern matching paradigm is that of seeking occurrences of one string in another, where both strings are drawn from an alphabet set Σ. Motivated by many applications, algorithms were developed for pattern matching where the matching relation is not necessarily the "=" relation. Examples are pattern matching with "don't cares", approximate matching, less-than matching, Cartesian-tree matching, order preserving matching, parameterized matching, degenerate matching, function matching, and more. Some of the matchings above allow for efficient pattern matching algorithms, while others do not.
Much work has not been done on categorization of the complexity of various string matching queries based on the type of matching. For example, when can exact matching be done fast? When can approximate matching be calculated fast? When can tandem or palindrome recognition be efficiently calculated?
This paper defines the matching graph of a given string under a matching relation. We show that the type of graph affects various string algorithms. The matching graph can also be a tool for lower bounds. We provide a lower bound for finding palindromes in a general degenerate graph. We also show some results in recognizing the minimum alphabet required for reconstructing a string that presents a given matching graph.

Subject Classification

ACM Subject Classification
  • Theory of computation → Pattern matching
Keywords
  • Pattern Matching
  • Matching Graphs
  • Reconstruction
  • NP-hardness

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. K. Abrahamson. Generalized string matching. SIAM J. Comp., 16(6):1039-1051, 1987. Google Scholar
  2. M. Alzamel, L. A. K. Ayad, G. Bernardini, R. Grossi, C. S. Iliopoulos, N. Pisanti, S. P. Pissis, and G. Rosone. Degenerate string comparison and applications. In Proc. 18th International Workshop on Algorithms in Bioinformatics (WABI), volume 113 of LIPIcs, pages 21:1-21:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPICS.WABI.2018.21.
  3. M. Alzamel, L. A. K. Ayad, G. Bernardini, R. Grossi, C. S. Iliopoulos, N. Pisanti, S. P. Pissis, and G. Rosone. Comparing degenerate strings. Fundam. Informaticae, 175(1-4):41-58, 2020. URL: https://doi.org/10.3233/FI-2020-1947.
  4. M. Alzamel, C. Hampson, C. S. Iliopoulos, Z. Lim, S. P. Pissis, D. Vlachakis, and S. Watts. Maximal degenerate palindromes with gaps and mismatches. Theor. Comput. Sci., 978:114182, 2023. URL: https://doi.org/10.1016/J.TCS.2023.114182.
  5. A. Amir, A. Aumann, M. Lewenstein, and E. Porat. Function matching. SIAM Journal on Computing, 35(5):1007-1022, 2006. Google Scholar
  6. A. Amir, G. Benson, and M. Farach. An alphabet independent approach to two dimensional pattern matching. SIAM J. Comp., 23(2):313-323, 1994. Google Scholar
  7. A. Amir, K. W. Church, and E. Dar. Separable attributes: a technique for solving the submatrices character count problem. In Proc. 13th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 400-401, 2002. Google Scholar
  8. A. Amir and M. Farach. Efficient 2-dimensional approximate matching of half-rectangular figures. Information and Computation, 118(1):1-11, April 1995. Google Scholar
  9. A. Amir, M. Farach, and S. Muthukrishnan. Alphabet dependence in parameterized matching. Information Processing Letters, 49:111-115, 1994. Google Scholar
  10. A. Amir, E. Kondratovsky, G. M. Landau, S. Marcus, and D. Sokol. Reconstructing parameterized strings from parameterized suffix and LCP arrays. Theor. Comput. Sci., 981:114230, 2024. URL: https://doi.org/10.1016/J.TCS.2023.114230.
  11. A. Amir, E. Kondratovsky, and A. Levy. On suffix tree detection. In Proc. 30th Int. Symp. on String Processing and Information Retrieval (SPIRE), volume 14240 of Lecture Notes in Computer Science, pages 14-27. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-43980-3_2.
  12. A. Amir, M. Lewenstein, and E. Porat. Approximate subset matching with "don't care"s. In Proc. 12th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 305-306, 2001. Google Scholar
  13. A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for string matching with k mismatches. J. Algorithms, 50(2):257-275, 2004. Google Scholar
  14. A. Amir and I. Nor. Generalized function matching. J. of Discrete Algorithms, 5(3):514-523, 2007. Google Scholar
  15. O. Amir, A. Amir, D. Sarne, and A. Fraenkel. On the practical power of automata in pattern matching. SN Computer Science, 2024. to appear. Google Scholar
  16. A. Apostolico and Z. Galil (editors). Pattern Matching Algorithms. Oxford University Press, 1997. Google Scholar
  17. A. Apostolico, M. Lewenstein, and P. Erdös. Parameterized matching with mismatches. Journal of Discrete Algorithms, 5(1):135-140, 2007. Google Scholar
  18. G.P. Babu, B.M. Mehtre, and M.S. Kankanhalli. Color indexing for efficient image retrieval. Multimedia Tools and Applications, 1(4):327-348, November 1995. Google Scholar
  19. Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, pages 457-466, December 2016. URL: https://doi.org/10.1109/FOCS.2016.56.
  20. B. S. Baker. A theory of parameterized pattern matching: algorithms and applications. In Proc. 25th Annual ACM Symposium on the Theory of Computation, pages 71-80, 1993. Google Scholar
  21. B. S. Baker. Parameterized pattern matching: Algorithms and applications. Journal of Computer and System Sciences, 52(1):28-42, 1996. Google Scholar
  22. B. S. Baker. Parameterized duplication in strings: Algorithms and an application to software maintenance. SIAM Journal on Computing, 26(5):1343-1362, 1997. Google Scholar
  23. G. Bernardini, E. Gabory, S. P. Pissis, L. Stougie, M. Sweering, and V. Zuba. Elastic-degenerate string matching with 1 error. In Proc. 15th Latin American symposium on Theoretical Informatics (LATIN), volume 13568 of Lecture Notes in Computer Science, pages 20-37. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-20624-5_2.
  24. G. Bernardini, P. Gawrychowski, N. Pisanti, S. P. Pissis, and G. Rosone. Even faster elastic-degenerate string matching via fast matrix multiplication. In Proc. 46th International Colloquium on Automata, Languages, and Programming (ICALP), volume 132 of LIPIcs, pages 21:1-21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.ICALP.2019.21.
  25. G. Bernardini, P. Gawrychowski, N. Pisanti, S. P. Pissis, and G. Rosone. Elastic-degenerate string matching via fast matrix multiplication. SIAM J. Comput., 51(3):549-576, 2022. URL: https://doi.org/10.1137/20M1368033.
  26. G. Bernardini, N. Pisanti, S. P. Pissis, and G. Rosone. Approximate pattern matching on elastic-degenerate text. Theor. Comput. Sci., 812:109-122, 2020. URL: https://doi.org/10.1016/J.TCS.2019.08.012.
  27. R.S. Boyer and J.S. Moore. A fast string searching algorithm. Comm. ACM, 20:762-772, 1977. Google Scholar
  28. P. Clifford and R. Clifford. Simple deterministic wildcard matching. Information Processing Letters, 101(2):53-54, 2007. Google Scholar
  29. M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge University Press, 2007. Google Scholar
  30. M. Crochemore, C. S. Iliopoulos, T. Kociumaka, M. Kubica, A. Langiu, S. P. Pissis, J. Radoszewski, W. Rytter, and T. Walen. Order-preserving indexing. Theor. Comput. Sci., 638:122-135, 2016. Google Scholar
  31. M. Crochemore, C. S. Iliopoulos, R. Kundu, M. Mohamed, and F. Vayani. Linear algorithm for conservative degenerate pattern matching. Eng. Appl. Artif. Intell., 51:109-114, 2016. URL: https://doi.org/10.1016/J.ENGAPPAI.2016.01.009.
  32. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994. Google Scholar
  33. J.P. Duval, T. Lecroq, and A. Lefebvre. Efficient validation and construction of border arrays and validation of string matching automata. RAIRO Theor. Informatics Appl., 43(2):281-297, 2009. Google Scholar
  34. M.J. Fischer and M.S. Paterson. String matching and other products. Complexity of Computation, R.M. Karp (editor), SIAM-AMS Proceedings, 7:113-125, 1974. Google Scholar
  35. E. Gabory, N. M. Mwaniki, N. Pisanti, S. P. Pissis, J. Radoszewski, M. Sweering, and W. Zuba. Comparing elastic-degenerate strings: Algorithms, lower bounds, and applications. In 34th Symp. on Combinatorial Pattern Matching, CPM, volume 259 of LIPIcs, pages 11:1-11:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.CPM.2023.11.
  36. P. Gawrychowski, A. Jez, and L. Jez. Validating the knuth-morris-pratt failure function, fast and online. Theory Comput. Syst., 54(2):337-372, 2014. Google Scholar
  37. C. Hazay, M. Lewenstein, and D. Sokol. Approximate parameterized matching. In Proc. 12th Annual European Symposium on Algorithms (ESA 2004), pages 414-425, 2004. Google Scholar
  38. J. Holub, W. F. Smyth, and S. Wang. Fast pattern-matching on indeterminate strings. J. Discrete Algorithms, 6(1):37-50, 2008. Google Scholar
  39. T. I, S. Inenaga, H. Bannai, and M. Takeda. Verifying and enumerating parameterized border arrays. Theor. Comput. Sci., 412(50):6959-6981, 2011. Google Scholar
  40. R.M. Idury and A.A Schäffer. Multiple matching of parameterized patterns. In Proc. 5th Combinatorial Pattern Matching (CPM), volume 807 of LNCS, pages 226-239. Springer-Verlag, 1994. Google Scholar
  41. C. S. Iliopoulos, R. Kundu, and S. P. Pissis. Efficient pattern matching in elastic-degenerate strings. Inf. Comput., 279:104616, 2021. URL: https://doi.org/10.1016/J.IC.2020.104616.
  42. J. Kärkkäinen, M. Piatkowski, and S. J. Puglisi. String inference from longest-common-prefix array. In Proc. 44th Intl. Coll. on Automata, Languages, and Programming, ICALP, volume 80 of LIPIcs, pages 62:1-62:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. Google Scholar
  43. D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM J. Comp., 6:323-350, 1977. Google Scholar
  44. G.M. Landau and U. Vishkin. Efficient string matching in the presence of errors. Proc. 26th IEEE FOCS, pages 126-126, 1985. Google Scholar
  45. Y. Nakashima, T. Okabe, T. I, S. Inenaga, H. Bannai, and M. Takeda. Inferring strings from lyndon factorization. Theor. Comput. Sci., 689:147-156, 2017. Google Scholar
  46. S.G. Park, M. Bataa, A. Amir, G.M. Landau, and K. Park. Finding patterns and periods in cartesian tree matching. Theoretical Computer Sciencr, 845:181-197, 2020. Google Scholar
  47. M. Swain and D. Ballard. Color indexing. International Journal of Computer Vision, 7(1):11-32, 1991. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail