From Reproducible to Explainable GIScience (Short Paper)

From Reproducible to Explainable GIScience (Short Paper)

Author Mark Gahegan



PDF
Thumbnail PDF

File

LIPIcs.GIScience.2023.32.pdf
  • Filesize: 431 kB
  • 6 pages

Document Identifiers

Author Details

Mark Gahegan
  • School of Computer Science / Centre for eResearch, University of Auckland, New Zealand

Cite As Get BibTex

Mark Gahegan. From Reproducible to Explainable GIScience (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 32:1-32:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.GIScience.2023.32

Abstract

Communicating deep understanding between humans is key to the effective application and sharing of science, and this is critical in GIScience because much of what we do has practical implications in the modelling and governance of societal and environmental systems. Reproducible and explainable science is needed for public trust, for informed governance, for productivity and for global sustainability [Vicente-Saez et al., 2021]. This article summarises some of the more recent research on reproducibility from outside of GIScience, gives practical guidance to current best practice from a GIScience perspective, provides a clearer road-map towards reproducibility and adds in the additional step of explainable GIScience as our final goal.

Subject Classification

ACM Subject Classification
  • Information systems → Geographic information systems
Keywords
  • GIScience
  • Reproducible
  • Explainable
  • discoverable

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. S. T. Arundel and W. Li. The Evolution of Geospatial Reasoning, Analytics and Modeling In: The Geographic Information Science and Technology Body of Knowledge, John P. Wilson (Ed.). UCGIS, 2021. Google Scholar
  2. M Baker. 1,500 scientists lift the lid on reproducibility. Nature, 533:452-454, 2016. URL: https://doi.org/10.1038/533452a.
  3. M. Bunge. How does it work? the search for explanatory mechanisms. Philosophy of the social sciences, 34(2):182-210, 2004. Google Scholar
  4. Y.H. Cao, C.J. Yi, and Y.H. Sheng. Geographic process modeling based on geographic ontology. Open Geosciences, 10(1):782-796, 2018. Google Scholar
  5. M. Clerx, M. Cooling, J. Cooper, A. Garny, K. Moyle, D. Nickerson, P. Nielsen, and H Sorby. Cellml 2.0. Journal of Integrative Bioinformatics, 17(2):2020-0021, 2020. URL: https://doi.org/10.1515/jib-2020-0021.
  6. A. J. Drummond, K. Chen, F. K. Mendes, and D. Xie. Linguaphylo: a probabilistic model specification language for reproducible phylogenetic analyses. bioRxiv, 2022.08.08.503246, 2022. URL: https://doi.org/10.1101/2022.08.08.503246.
  7. A. Ellerm, B. Adams, M. Gahegan, and L. Trombach. Enabling livepublication. In IEEE 18th International Conference on e-Science, Salt Lake City, UT, USA. IEEE Computer Society, 2022. URL: https://doi.org/10.1109/eScience55777.2022.00067.
  8. M. Gahegan. Our gis is too small. The Canadian Geographer / Le Géographe canadien, 62:15-26, 2018. URL: https://doi.org/10.1111/cag.12434.
  9. M. F. Goodchild. Commentary: general principles and analytical frameworks in geography and giscience. Annals of GIS, 28(1):85-87, 2022. URL: https://doi.org/10.1080/19475683.2022.2030943.
  10. R Harris. The semantics of science. A-and-C Black, 2005. Google Scholar
  11. T. Hothorn and F. Leisch. Case studies in reproducibility. Briefings in bioinformatics, 12(3):288-300, 2011. Google Scholar
  12. K. Janowicz, A. Haller, S. Cox, D. Phuoc, and M. Lefrancois. Sosa: A lightweight ontology for sensors, observations, samples, and actuators. Journal of Web Semantics, 2018. URL: https://doi.org/10.2139/ssrn.3248499.
  13. S. Levinson. Pragmatics. Cambridge University Press, 1983. Google Scholar
  14. D. Nüst, C. Granell, B. Hofer, M. Konkol, F.O. Ostermann, R. Sileryte, and V. Cerutti. Reproducible research and giscience: an evaluation using agile conference papers. PeerJ, 13(6):p.e 5072, 2018. URL: https://doi.org/10.7717/peerj.5072.
  15. Frank O. Ostermann, Daniel Nüst, Carlos Granell, Barbara Hofer, and Markus Konkol. Reproducible research and giscience: An evaluation using giscience conference papers. In International Conference Geographic Information Science, 2020. Google Scholar
  16. Physiome. The physiome journal. Physiome, 1(1):1, 2019. Google Scholar
  17. H. Rijgersberg, M. Van Assem, and J.L. Top. Ontology of units of measure and related concepts. Semantic Web, 4:3-13, 2013. Google Scholar
  18. F.J. Tapiador, A. Navarro, V. Levizzani, E. García-Ortega, G.J. Huffman, C. Kidd, P.A. Kucera, C.D. Kummerow, H. Masunaga, W.A. Petersen, and R. Roca. Global precipitation measurements for validating climate models. Atmospheric Research, 197:1-20, 2017. Google Scholar
  19. N. Turner Lee, P. Resnick, and G. B. Wednesday. Algorithmic bias detection and mitigation: Best practices and policies to reduce consumer harms. Brookings Institute, 2019. Google Scholar
  20. R. Vicente-Saez, R. Gustafsson, and C. Martinez-Fuentes. Opening up science for a sustainable world: An expansive normative structure of open science in the digital era. Science and Public Policy, 48(6):799-813, 2021. URL: https://doi.org/10.1093/scipol/scab049.
  21. J.P. Wilson, K. Butler, S. Gao, Y. Hu, W. Li, and D.J. Wright. A five-star guide for achieving replicability and reproducibility when working with gis software and algorithms. Annals of the American Association of Geographers, 111(5):1311-1317, 2021. Google Scholar
  22. D. J. Wright, M. F. Goodchild, and J. D. Proctor. Demystifying the persistent ambiguity of gis as "tool" versus "science". The Annals of the Association of American Geographers, 87(2):346-362, 1997. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail