From Evaluating to Forecasting Performance: How to Turn Information Retrieval, Natural Language Processing and Recommender Systems into Predictive Sciences (Dagstuhl Perspectives Workshop 17442)

From Evaluating to Forecasting Performance: How to Turn Information Retrieval, Natural Language Processing and Recommender Systems into Predictive Sciences (Dagstuhl Perspectives Workshop 17442)

Authors Nicola Ferro, Norbert Fuhr, Gregory Grefenstette, Joseph A. Konstan, Pablo Castells, Elizabeth M. Daly, Thierry Declerck, Michael D. Ekstrand, Werner Geyer, Julio Gonzalo, Tsvi Kuflik, Krister Lindén, Bernardo Magnini, Jian-Yun Nie, Raffaele Perego, Bracha Shapira, Ian Soboroff, Nava Tintarev, Karin Verspoor, Martijn C. Willemsen, Justin Zobel



PDF
Thumbnail PDF

File

DagMan.7.1.96.pdf
  • Filesize: 2.19 MB
  • 44 pages

Document Identifiers

Author Details

Nicola Ferro
Norbert Fuhr
Gregory Grefenstette
Joseph A. Konstan
Pablo Castells
Elizabeth M. Daly
Thierry Declerck
Michael D. Ekstrand
Werner Geyer
Julio Gonzalo
Tsvi Kuflik
Krister Lindén
Bernardo Magnini
Jian-Yun Nie
Raffaele Perego
Bracha Shapira
Ian Soboroff
Nava Tintarev
Karin Verspoor
Martijn C. Willemsen
Justin Zobel

Cite As Get BibTex

Nicola Ferro, Norbert Fuhr, Gregory Grefenstette, Joseph A. Konstan, Pablo Castells, Elizabeth M. Daly, Thierry Declerck, Michael D. Ekstrand, Werner Geyer, Julio Gonzalo, Tsvi Kuflik, Krister Lindén, Bernardo Magnini, Jian-Yun Nie, Raffaele Perego, Bracha Shapira, Ian Soboroff, Nava Tintarev, Karin Verspoor, Martijn C. Willemsen, and Justin Zobel. From Evaluating to Forecasting Performance: How to Turn Information Retrieval, Natural Language Processing and Recommender Systems into Predictive Sciences (Dagstuhl Perspectives Workshop 17442). In Dagstuhl Manifestos, Volume 7, Issue 1, pp. 96-139, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018) https://doi.org/10.4230/DagMan.7.1.96

Abstract

We describe the state-of-the-art in performance modeling and prediction for Information Retrieval (IR), Natural Language Processing (NLP) and Recommender Systems (RecSys) along with its shortcomings and strengths. We present a framework for further research, identifying five major problem areas: understanding measures, performance analysis, making underlying assumptions explicit, identifying application features determining performance, and the development of prediction models describing the relationship between assumptions, features and resulting performance.

Subject Classification

Keywords
  • Information Systems
  • Formal models
  • Evaluation
  • Simulation
  • User Interaction

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail