Mathematics > Category Theory
[Submitted on 27 Jul 2022 (v1), last revised 7 Aug 2023 (this version, v3)]
Title:Categorification of Negative Information using Enrichment
View PDFAbstract:In many engineering applications it is useful to reason about "negative information". For example, in planning problems, providing an optimal solution is the same as giving a feasible solution (the "positive" information) together with a proof of the fact that there cannot be feasible solutions better than the one given (the "negative" information). We model negative information by introducing the concept of "norphisms", as opposed to the positive information of morphisms. A "nategory" is a category that has "nom"-sets in addition to hom-sets, and specifies the interaction between norphisms and morphisms. In particular, we have composition rules of the form morphism + norphism $\to$ norphism. Norphisms do not compose by themselves; rather, they use morphisms as catalysts. After providing several applied examples, we connect nategories to enriched category theory. Specifically, we prove that categories enriched in de Paiva's dialectica categories GC, in the case C = Set and equipped with a modified monoidal product, define nategories which satisfy additional regularity properties. This formalizes negative information categorically in a way that makes negative and positive morphisms equal citizens.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Wed, 27 Jul 2022 15:42:44 UTC (74 KB)
[v2] Mon, 19 Sep 2022 07:10:57 UTC (82 KB)
[v3] Mon, 7 Aug 2023 10:38:55 UTC (74 KB)
Current browse context:
math.CT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.